Paper
26 May 2011 Strong room-temperature chemiresistive effect of TiO2 nanowires to nitro-aromatic compounds
Author Affiliations +
Abstract
Nanostructured TiO2 thin films are found to be highly responsive to trace vapors of common nitro-explosives at room temperature. Thin films of TiO2 nanowires, made with high yield hydrothermal synthesis, present very reliable sensing characteristics to nitro-aromatic molecules with high sensitivity and fast response at ambient condition. The detection limit of 2, 4-dinitrotoluene (DNT) vapor at room temperature could reach up to 3ppb. The experimental results indicate titania nanowires as a novel chemical sensor to explosive gas have a great commercial potential due to its unique advantages: high sensitivity, rapid response and recovery, small size suitable for intergration with microelectronics and low fabrication cost. Experimental results and a theoretical model are presented.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Danling Wang, Antao Chen, Qifeng Zhang, and Guozhong Cao "Strong room-temperature chemiresistive effect of TiO2 nanowires to nitro-aromatic compounds", Proc. SPIE 8024, Advanced Environmental, Chemical, and Biological Sensing Technologies VIII, 80240W (26 May 2011); https://doi.org/10.1117/12.885065
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Nanowires

Titanium dioxide

Resistance

Thin films

Explosives

Molecules

Sensors

RELATED CONTENT


Back to Top