Paper
22 July 2014 Simultaneous ultra-high contrast imaging and determination of time-dependent, non-common path aberrations in the presence of detector noise
Author Affiliations +
Abstract
Ground-based ultra-high contrast imaging, as required for direct imaging of exoplanets and other solar systems, is limited by difficulty of separating the planetary emission from the effects of optical aberrations that are not compensated by the adaptive optics (AO) system, so-called non-common path aberrations" (NCPAs). Simultaneous (~ millisecond) exposures by the science camera and the AO system enable the use of “phase diversity" to estimate both the NCPAs and the scene via a processing procedure first described by the author (R. Frazin 2013, ApJ, 767, article id. 21).This method is fully compatible with more standard concepts used in long-exposure high-contrast imaging, such as angular differential imaging and spectral deconvolution. Long-exposure methods find time-dependent NCPAs, such as those caused by vibrations, particularly challenging. Here, an NCPA of the form of α cos(k•r-ωt + ∂) is considered. It is shown that, when sampled at millisecond time-scales, the image plane data are sensitive to arg(α), ∂ and ω, and, therefore such NCPAs can be simultaneously estimated with the scene. Simulations of observations with ms exposure times are reported. These simulations include substantial detector noise and a sinusoidal NCPA that places a speckle exactly at the location of a planet. Simulations show that the effects of detector noise can be mitigated by mixing exposures of various lengths, allowing estimation of the planet's brightness.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Richard A. Frazin "Simultaneous ultra-high contrast imaging and determination of time-dependent, non-common path aberrations in the presence of detector noise", Proc. SPIE 9145, Ground-based and Airborne Telescopes V, 91453Q (22 July 2014); https://doi.org/10.1117/12.2054356
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Adaptive optics

Speckle

Sensors

Cameras

Coronagraphy

Imaging systems

Planets

Back to Top