Presentation + Paper
25 August 2015 Discriminatory effects in the optical binding of chiral nanoparticles
Author Affiliations +
Abstract
The laser-induced intermolecular force that exists between two or more particles subjected to a moderately intense laser beam is termed ‘optical binding’. Completely distinct from the single-particle forces that give rise to optical trapping, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In conjunction with optical trapping, the optomechanical forces in optical binding afford means for the manipulation and fabrication of optically bound matter. The Casimir-Polder potential that is intrinsic to all matter can be overridden by the optical binding force in cases where the laser beam is of sufficient intensity. Chiral discrimination can arise when the laser input has a circular polarization, if the particles are themselves chiral. Then, it emerges that the interaction between particles with a particular handedness is responsive to the left- or right-handedness of the light. The present analysis, which expands upon previous studies of chiral discrimination in optical binding, identifies a novel mechanism that others have previously overlooked, signifying that the discriminatory effect is much more prominent than originally thought. The new theory leads to results for freely-tumbling chiral particles subjected to circularly polarized light. Rigorous conditions are established for the energy shifts to be non-zero and display discriminatory effects with respect to the handedness of the incident beam. Detailed calculations indicate that the energy shift is larger than those previously reported by three orders of magnitude.
Conference Presentation
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kayn A. Forbes, David S. Bradshaw, and David L. Andrews "Discriminatory effects in the optical binding of chiral nanoparticles", Proc. SPIE 9548, Optical Trapping and Optical Micromanipulation XII, 95480M (25 August 2015); https://doi.org/10.1117/12.2188147
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Particles

Optical binding

Nanoparticles

Optical tweezers

Molecules

Radiation effects

Magnetism

RELATED CONTENT

Chiral separation and twin-beam photonics
Proceedings of SPIE (March 04 2016)
Optical trapping of individual magnetic nanoparticles
Proceedings of SPIE (September 07 2018)
Mechanisms for optical binding
Proceedings of SPIE (August 20 2009)
Optically induced nanoparticle assemblies
Proceedings of SPIE (August 29 2008)

Back to Top