Paper
9 August 2016 Design and analysis of the NFIRAOS thermal optics enclosure
Author Affiliations +
Abstract
The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility adaptive optics system for the Thirty Meter Telescope (TMT). In order to meet the optical performance and stability specifications essential to leveraging the extraordinary capabilities of the TMT, all of the optical components within NFIRAOS will be protected within a large thermally-controlled optics enclosure (ENCL). Among the many functions performed by the ENCL, the most critical functions include providing a highly stable, light-tight, cold, dry environment maintained at 243±0.5 K for the NFIRAOS opto-mechanical sub-systems and supporting TABL structure. Although the performance of the ENCL during the science operation of NFIRAOS is critical, the maximum thermal loading will be defined by the cooldown/ warm-up cycle which must be accomplished within a time-frame that will minimize the on-sky operational impact due to daytime maintenance work. This study describes the thermal/mechanical design development and supporting analyses (analytical and finite element analyses (FEA)) completed during the preliminary design phase and through the current progression of the ENCL final design phase. The walls of the ENCL consist of interlocking, multilayered, thermally insulated panels, which are supported by an externally located structural framework which attaches to the NFIRAOS Instrument Support Structure. The regulation of the interior ENCL wall surface temperature to within ±0.5 K requires that the heat flux into the interior of NFIRAOS be eliminated by cooling a thermal conduction plate embedded between multiple layers of insulation. The thermal design of the enclosure was evaluated for both steady-state (SS) performance and transient performance (cool-down and warm-up cycles). The transient analysis utilizes a hybrid of a one-dimensional thermal network approach combined with three-dimensional conjugate heat transfer analyses of explicit opto-mechanical components within the ENCL. Many design-parameter combinations were evaluated to determine the performance impact of cooling power and transient temperature profiles. The results derived from the analyses of these design iterations indicate the multi-layer enclosure wall design will meet all thermal requirements. During SS operation, the interior temperature variation is within ±0.5 K of the target operational temperature, while the heat influx from the exterior TMT environment is 1528 W (extracted by the embedded cold plate). The transient cool-down cycle will take approximately 15 hours to complete and requires the in-situ air handling units to deliver 14KW of cooling power (derated for the TMT site conditions) throughout the interior space of the NFIRAOS ENCL.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joeleff Fitzsimmons, David Andersen, Jenny Atwood, Peter Byrnes, Glen Herriot, Alexis Hill, and Kei Szeto "Design and analysis of the NFIRAOS thermal optics enclosure", Proc. SPIE 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 9908A5 (9 August 2016); https://doi.org/10.1117/12.2233633
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Finite element methods

Thirty Meter Telescope

Aluminum

Skin

Adaptive optics

Cladding

Thermography

Back to Top