LiteBIRD is a next-generation space telescope which aims to measure primordial gravitational waves in the polarisation of the cosmic microwave background. The level of the primordial (tensor, or B-mode) signal in relation to the scalar (or E-mode) only has a known upper limit, and the instrument requirement is to measure a tensor-to-scalar ratio sensitivity δr<0.001. Systematic effects arising from cosmic radiation are expected to play a significant role, and our prior work has focused on the development of an end-to-end simulation tool for evaluating the scale of this in LiteBIRD’s Low Frequency Telescope (LFT). We present an updated forecasting method which makes use of event tables generated by a new Geant4 mass model of LFT. We will compare the previously used simplified model with that of the updated mass model, and project these differences into an expected effect of the cosmic ray effect δr. Lastly, we will examine the use of a simple filtering method for removing direct detector impacts by cosmic rays, which have been shown previously to play the largest role in this systematic effect.
|