Open Access
3 May 2022 Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser
Jintian Lin, Saeed Farajollahi, Zhiwei Fang, Ni Yao, Renhong Gao, Jianglin Guan, Li Deng, Tao Lu, Min Wang, Haisu Zhang, Wei Fang, Lingling Qiao, Ya Cheng
Author Affiliations +
Abstract

Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication, light detection and ranging, to metrology and sensing. Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality (Q) factor and supports only a single lasing frequency simultaneously. Here, we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths. As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart, while their Q factors (above 10 million) are even higher due to the significantly reduced scattering on their propagation paths, single-frequency lasing with a linewidth as narrow as 322 Hz is observed. The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers. Finally, enabled by the strong linear electro-optic effect of LN, real-time electro-optical tuning of the microlaser with a high tuning efficiency of ∼50  pm  /  100  V is demonstrated.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Jintian Lin, Saeed Farajollahi, Zhiwei Fang, Ni Yao, Renhong Gao, Jianglin Guan, Li Deng, Tao Lu, Min Wang, Haisu Zhang, Wei Fang, Lingling Qiao, and Ya Cheng "Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser," Advanced Photonics 4(3), 036001 (3 May 2022). https://doi.org/10.1117/1.AP.4.3.036001
Received: 23 November 2021; Accepted: 30 March 2022; Published: 3 May 2022
Lens.org Logo
CITATIONS
Cited by 45 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Electro optics

Erbium

Photonics

Chromium

Photomicroscopy

Optical microcavities

Signal detection

Back to Top