Open Access
1 January 2007 Snapshot hyperspectral imaging in ophthalmology
Author Affiliations +
Abstract
Retinal imaging spectroscopy can provide functional maps using chromophore spectra. For example, oxygen saturation maps show ischemic areas from diabetes and venous occlusions. Obtaining retinal spatial-spectral data has been difficult due to saccades and long data acquisition times (>5 s). We present a snapshot imaging spectrometer with far-reaching applicability that acquires a complete spatial-spectral image cube in ~3 ms from 450 to 700 nm with 50 bands, eliminating motion artifacts and pixel misregistration. Current retinal spectral imaging approaches are incapable of true snapshot operation over a wide spectral range with a large number of spectral bands. Coupled to a fundus camera, the instrument returns true color retinal images for comparison to standard fundus images and for image validation while the patient is still dilated. Oxygen saturation maps were obtained with a three-wavelength algorithm: for healthy subjects arteries were ~95% and veins 30 to 35% less. The instrument is now undergoing clinical trials.
©(2007) Society of Photo-Optical Instrumentation Engineers (SPIE)
William R. Johnson, Daniel W. Wilson, Wolfgang Fink, Mark S. Humayun M.D., and Gregory H. Bearman "Snapshot hyperspectral imaging in ophthalmology," Journal of Biomedical Optics 12(1), 014036 (1 January 2007). https://doi.org/10.1117/1.2434950
Published: 1 January 2007
Lens.org Logo
CITATIONS
Cited by 229 scholarly publications and 19 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Hyperspectral imaging

Cameras

Oxygen

Sensors

Spectroscopy

Ophthalmology

Oximetry

RELATED CONTENT


Back to Top