Open Access
1 March 2007 Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra
Author Affiliations +
Abstract
We develop a double-differential spectroscopic analysis method for broadband near-infrared (NIR, 650 to 1000 nm) absorption spectra. Application of this method to spectra of tumor-containing breast tissue reveals specific cancer biomarkers. In this method, patient-specific variations in molecular composition are removed by using the normal tissue as an internal control. The effects of concentration differences of the four major tissue absorbers (oxyhemoglobin, deoxyhemoglobin, water, and bulk lipid) between the tumor and normal tissue are accounted for to reveal small spectral components unique to cancer. From a pilot study of 15 cancer patients, we find these spectral components to be characterized by specific NIR absorption bands. Based on the spectral regions of absorption at about 760, 930, and 980 nm, we identify these biomarkers with changes in state or addition of lipid and/or water. To quantify spectral variation in the absorption bands, we construct the specific tumor component (STC) index. The STC index identifies regions of the breast with tumors.
©(2007) Society of Photo-Optical Instrumentation Engineers (SPIE)
Shwayta Kukreti, Albert E. Cerussi, Bruce Jason Tromberg, and Enrico Gratton "Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra," Journal of Biomedical Optics 12(2), 020509 (1 March 2007). https://doi.org/10.1117/1.2709701
Published: 1 March 2007
Lens.org Logo
CITATIONS
Cited by 46 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Tumors

Absorption

Breast

Near infrared

Cancer

Near infrared spectroscopy

Back to Top