Open Access
14 December 2019 Singlet oxygen model evaluation of interstitial photodynamic therapy with 5-aminolevulinic acid for malignant brain tumor
Atsuki Izumoto, Takahiro Nishimura, Hisanao Hazama, Naokado Ikeda, Yoshinaga Kajimoto, Kunio Awazu
Author Affiliations +
Abstract

Interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (ALA) is a possible alternative treatment for malignant brain tumors. Further evaluation is, however, required before it can be clinically applied. Computational simulation of the photophysical process in ALA-iPDT can offer a quantitative tool for understanding treatment outcomes, which depend on various variables related to clinical treatment conditions. We propose a clinical simulation method of ALA-iPDT for malignant brain tumors using a singlet oxygen (O12) model and O12 threshold to induce cell death. In this method, the amount of O12 generated is calculated using a photosensitizer photobleaching coefficient and O12 quantum yield, which have been measured in several previous studies. Results of the simulation using clinical magnetic resonance imaging data show the need to specify the insertion positions of cylindrical light diffusers and the level of light fluence. Detailed analysis with a numerical brain tumor model demonstrates that ALA-iPDT treatment outcomes depend on combinations of photobleaching and threshold values. These results indicate that individual medical procedures, including pretreatment planning and treatment monitoring, will greatly benefit from simulation of ALA-iPDT outcomes.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Atsuki Izumoto, Takahiro Nishimura, Hisanao Hazama, Naokado Ikeda, Yoshinaga Kajimoto, and Kunio Awazu "Singlet oxygen model evaluation of interstitial photodynamic therapy with 5-aminolevulinic acid for malignant brain tumor," Journal of Biomedical Optics 25(6), 063803 (14 December 2019). https://doi.org/10.1117/1.JBO.25.6.063803
Received: 15 September 2019; Accepted: 26 November 2019; Published: 14 December 2019
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Tumors

Oxygen

Brain

Photodynamic therapy

Diffusers

Tissues

Tumor growth modeling

Back to Top