1 August 1991 Imaging polarimeters for solar EUV astronomy
Richard B. Hoover, Silvano Fineschi, Juan M. Fontenla, Arthur B. C. Walker II
Author Affiliations +
αWe describe new EUV/FUV (100 Å ≤ λ ≤ 1500 Å) polarimeter instrument concepts for solar research. These instruments are designed to observe linear polarization in EUV/FUV spectral lines originating in the outer solar atmosphere, specifically: (1) a new coronagraph/polarimeter operating at 1215.7 Å (neutral hydrogen Lyman ), which could observe this line in the near solar corona and lead to the first direct measurements of both strength and direction of coronal magnetic fields and (2) a new multilayer EUV imaging polarimeter, operating at wavelengths of strong helium emission lines (e.g., 304 Å, 584 Å), which could observe impact polarization phenomena and provide information concerning the relative importance ofthermal and nonthermal processes in solarflares. The emission mechanisms we will address with these instruments include resonance scattering and impact polarization. Resonance scattering of chromospheric radiation anisotropically illuminating the emitting atoms in the corona can produce up to 20% linear polarization in FUV coronal lines. Modifications, via the Hanle effect, of this polarization would result from the presence of a magnetic field. In the EUV, detectable polarization may be produced by impact polarization, which results from anisotropic collisional excitation of the emitting atoms by particles (electrons, protons) with non-Maxwellian velocity distributions produced during flares. These coronagraph/polarimeter instruments employ all-reflective optical systems utilizing ultrasmooth, low-scatter normal incidence mirrors and reflective polarization analyzers comprised of advanced flow-polished substrates with state-of-the-art thin film FUV interference and EUV multilayer coatings. The reflecting polarization analyzers operate at the Brewster angle. We discuss several instrument configurations and provide theoretical calculations and performance predictions for coronagraph/polarimeter instruments utilizing an optical design similar to the Ritchey-Chrétien EUV/FUV telescopes developed for flight on the Stanford/MSFC/LLNL Multi-Spectral Solar Telescope Array (MSSTA).
Richard B. Hoover, Silvano Fineschi, Juan M. Fontenla, and Arthur B. C. Walker II "Imaging polarimeters for solar EUV astronomy," Optical Engineering 30(8), (1 August 1991). https://doi.org/10.1117/12.55923
Published: 1 August 1991
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Coronagraphy

Telescopes

Polarization

Mirrors

Extreme ultraviolet

Magnetism

Polarimetry

RELATED CONTENT

Advanced Solar Coronal Explorer mission (ASCE)
Proceedings of SPIE (November 25 1999)
The chromosphere and prominence magnetometer
Proceedings of SPIE (September 24 2012)
Solar EUV/FUV line polarimetry: instruments and methods
Proceedings of SPIE (February 01 1991)

Back to Top