Integrated optical filters play a key role in modern optical systems, finding extensive applications in quantum optics, biosensing, programmable photonics, and telecommunications. Among the most commonly used structures utilized for implementing integrated optical filters are ring resonators and Bragg gratings. Bragg gratings are characterized by a periodically perturbed refractive index profile along the propagation direction. By precisely engineering the strength of the perturbation along the grating length, filters with arbitrary spectral responses can be achieved.
In this work we summarize our recent contributions to integrated Bragg filters in Si-photonics, covering designs for applications ranging from telecommunications to quantum optics.
Subwavelength materials have become a fundamental tool for silicon photonic design, enabling devices with unique performance characteristics. We will briefly review some fundamentals here and will then discuss some of the latest advances in the field, with a particular focus on polarization handling. Furthermore, we will discuss advances in integrated optical sensing, addressing both fundamental issues such as the optimization of detection limits, as well as state-of-the-art results with novel sensing architectures. We will also discuss which benefits subwavelength structures can provide in such sensors.
In this talk we present our recent advances in SWG metamaterial engineering. We will show a 1D-optical phased array composed of 112 evanescent-coupled surface emitting antennas with a length of 1.5 mm and fed by a compact distributed Bragg deflector. The measurements demonstrate a wavelength-steerable collimated beam with a far-field angular divergence of 1.8o × 0.2o. Experimental results of a bricked SWG 2×2 MMI coupler are also shown, achieving polarization agnostic performance in the 1500nm to 1560nm wavelength range. Both devices were fabricated on a standard 220-nm SOI platform using a single full-etch step process, with a minimum feature size of 80 nm, and thus compatible with immersion deep-UV lithography.
We present two novel topologies of subwavelength grating (SWG) waveguides: the bricked-SWG and the evanescently-coupled-SWG. The bricked topology enables accurate control of waveguide anisotropy while maintaining the index and dispersion engineering advantage intrinsic to SWG waveguides. The evanescently-coupled-SWG allows unprecedented control of the strength of the modal perturbation in waveguide Bragg gratings and nanophotonic antennas. Both topologies leverage a Manhattan-like pattern, with pixel sizes compatible with deep-uv lithography. Our recent results will be discussed, focusing on polarization-independent multimode interference couplers for the O and C bands and a millimeter-long narrow-beam steerable optical antenna array with angular divergence of only 1.8o×0.2o.
Subwavelength grating metamaterials have become an integral design tool in silicon photonics. The lithographic segmentation of integrated waveguides at the subwavelength scale allows us to control optical properties such as mode delocalization, wavelength dispersion, and birefringence. So far, a range of subwavelength-based devices with unprecedented performance has been demonstrated, such as couplers, polarization-handling structures, filters, and input/output chip interfaces. In this invited talk, we will review the anisotropic foundations of subwavelength-grating metamaterial design and will provide an overview of our latest advances in subwavelength-enhanced silicon photonics devices, including optical antennas for beam steering and multi-line Bragg filters for spectral shaping.
Silicon photonic waveguides patterned at the subwavelength level behave as metamaterials whose optical properties, including refractive index, dispersion and anisotropy can be tuned by judiciously designing the subwavelength geometry. Over the past years, the added design freedom afforded by these structures has enabled a wide variety of novel high performance devices, ranging from high efficiency fibre-to-chip couplers, to on-chip polarization and mode management, and ultra-broadband waveguide couplers covering several optical communication bands. In this invited keynote talk we will revisit the physical foundations of these structures, explore some of the latest advances in the field with applications in both telecommunications and sensing, and discuss some of the outstanding challenges to move these structures from research labs to large-scale commercialisation.
Silicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light-matter interaction in the real part of the mode effective index (in the near-infrared band), or in its imaginary part in a specific range of wavelengths (in the mid-infrared band).
Regardless of which is the operating wavelength range, it is essential to select the proper sensing waveguide in order to maximize the device sensitivity. In this work we will review the potential of diffractionless subwavelength grating waveguides (SWG) for sensing applications by demonstrating their powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications.
In the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this regard, we will also show our recent progress in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.