Indium Phosphide integrated photonics enables the combination of high-speed lasers and modulators with filters, detectors and multiplexers in one wafer-scale process flow. Low-voltage modulation at rates of 50Gigabit/second and above are feasible with combinations of semi-insulating substrates, optimised multi-quantum wells and high-speed electrical design. Advances in monolithic InP platform technologies have created a mechanism to rapidly introduce such high performance building blocks into sophisticated integration processes, enabling photonic integrated circuits with many tens of active components including distributed feedback lasers, tunable lasers and a range of passsive components. Our recent introduction of 192nm deep UV scanner lithography – believed to be a world first for InP integrated photonics – also enables a step change in the performance for the integrated filters and mode control.
In this paper, we present recent innovations in the creation of high performance transceiver technologies for optical interconnects. We showcase circuits using InP integrated photonics to create high-speed, energy-efficient, optically-multiplexed circuits. Monolithic polarization multiplexing and wavelength domain multiplexing are reviewed where all components, inclusive of the lasers, are created in the same wafer. Line-rates of up to 320 Gb/s are demonstrated for optically multiplexed circuits using a variety of open access fabrication platforms. The challenges and approaches for Terabit/second class transceiver chips will be addressed, addressing crosstalk management, component miniaturisation, and intimate electronic integration.
We present finite difference thermal modeling to predict temperature distribution, heat flux, and thermal resistance inside lasers with different waveguide geometries. We provide a quantitative experimental and theoretical comparison of the thermal behavior of shallow-ridge (SR) and buried-heterostructure (BH) lasers. We investigate the influence of a split heat source to describe p-layer Joule heating and nonradiative energy loss in the active layer and the heat-sinking from top as well as bottom when quantifying thermal impedance. From both measured values and numerical modeling we can quantify the thermal resistance for BH lasers and SR lasers, showing an improved thermal performance from 50K/W to 30K/W for otherwise equivalent BH laser designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.