Monolithic distributed feedback semiconductor lasers (1550 nm) for FMCW LiDAR applications have been designed, fabricated and tested. The strong optical frequency modulation distortion observed when a standard DFB laser is modulated with a triangular current waveform is significantly mitigated in our laser. A 100 kHz frequency modulation with amplitude of 0.9 GHz and nonlinear distortion of 0.3%, calculated as the standard deviation of the optical frequency after removal of a linear fit, was measured through an unbalanced fiber interferometer. This was achieved without electronic pre-distortion of the triangular waveform. The 60 kHz intrinsic linewidth of the laser was unaffected by the modulation. Two lasers were co-packaged in a 2.6 cm3 multi-layer ceramic package and coupled to fiber pigtails with micro-lenses. The pins of the ceramic package were soldered to a printed circuit board containing the current sources driving the lasers. This optical source was used in a two-channel LiDAR demonstrator built from off-the-shelf fiber optic components and a twodimensional gimbal scanning mirror. This demonstrator enabled detecting a target with 10 % Lambertian reflectivity up to a distance of >120 m and recording point clouds of different scenes. This shows that FMCW LiDAR in combination with highly coherent and linear DFB laser sources is a very promising technology for long range sensing. A version under development will include a silicon photonics chip for further integration and functionality including I/Q detection.
Narrow-linewidth semiconductor lasers, micro-optics, silicon photonics (SiP), low noise electronics and high-density packaging are key elements for the development of compact high-end light sources for sensing.
A laser module for the interrogation of an RFOG (Resonant Fiber-Optic Gyroscope) includes three distributed feedback lasers coupled with micro-lenses to a multi-component SiP chip that performs beat note detection and several other functions. The lasers and SiP chip are packaged in a 2.6 cm3 multi-layer ceramic package, a 4x volume reduction over a first generation module. The package interfaces with 92 electrical pins and two fiber pigtails, one carrying the signals from a master and slave lasers, another carrying that from a second slave laser. The complete laser source including electronics is 60 mm in diameter and 23 mm in height, a 10x volume improvement over a previous version. The master laser can be locked to the RFOG resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
A lighter version of this laser module for FM-CW LIDAR applications produces an output optical frequency that varies linearly as a function of the electrical drive. A triangular modulation at 100 kHz with a greater than 1 GHz amplitude has been demonstrated with a linearity noise near 1 MHz as measured through a 150 m unbalanced interferometer.
A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions.
This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.