PurposeAutomatic comprehensive reporting of coronary artery disease (CAD) requires anatomical localization of the coronary artery pathologies. To address this, we propose a fully automatic method for extraction and anatomical labeling of the coronary artery tree using deep learning.ApproachWe include coronary CT angiography (CCTA) scans of 104 patients from two hospitals. Reference annotations of coronary artery tree centerlines and labels of coronary artery segments were assigned to 10 segment classes following the American Heart Association guidelines. Our automatic method first extracts the coronary artery tree from CCTA, automatically placing a large number of seed points and simultaneous tracking of vessel-like structures from these points. Thereafter, the extracted tree is refined to retain coronary arteries only, which are subsequently labeled with a multi-resolution ensemble of graph convolutional neural networks that combine geometrical and image intensity information from adjacent segments.ResultsThe method is evaluated on its ability to extract the coronary tree and to label its segments, by comparing the automatically derived and the reference labels. A separate assessment of tree extraction yielded an F1 score of 0.85. Evaluation of our combined method leads to an average F1 score of 0.74.ConclusionsThe results demonstrate that our method enables fully automatic extraction and anatomical labeling of coronary artery trees from CCTA scans. Therefore, it has the potential to facilitate detailed automatic reporting of CAD.
4D cardiac CT angiography (CCTA) images acquired for transcatheter aortic valve implantation (TAVI) planning provide a wealth of information about the morphology of the heart throughout the cardiac cycle. We propose a deep learning method to automatically segment the cardiac chambers and myocardium in 4D CCTA. We obtain automatic segmentations in 472 patients and use these to automatically identify end-systolic (ES) and end-diastolic (ED) phases, and to determine the left ventricular ejection fraction (LVEF). Our results show that automatic segmentation of cardiac structures through the cardiac cycle is feasible (median Dice similarity coefficient 0.908, median average symmetric surface distance 1.59 mm). Moreover, we demonstrate that these segmentations can be used to accurately identify ES and ED phases (bias [limits of agreement] of 1.81 [-11.0; 14.7]% and -0.02 [-14.1; 14.1]%). Finally, we show that there is correspondence between LVEF values determined from CCTA and echocardiography (-1.71 [-25.0; 21.6]%). Our automatic deep learning approach to segmentation has the potential to routinely extract functional information from 4D CCTA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.