Presentation + Paper
2 March 2022 Heterogeneously integrated VCSELs on silicon
Author Affiliations +
Abstract
A wafer-scale CMOS-compatible process for heterogeneous integration of III-V epitaxial material onto silicon for photonic device fabrication is presented. Transfer of AlGaAs-GaAs Vertical-Cavity Surface-Emitting Laser (VCSEL) epitaxial material onto silicon using a carrier wafer process and metallic bonding is used to form III-V islands which are subsequently processed into VCSELs. The transfer process begins with the bonding of III-V wafer pieces epitaxy-down on a carrier wafer using a temporary bonding material. Following substrate removal, precisely-located islands of material are formed using photolithography and dry etching. These islands are bonded onto a silicon host wafer using a thin-film non-gold metal bonding process and the transfer wafer is removed. Following the bonding of the epitaxial islands onto the silicon wafer, standard processing methods are used to form VCSELs with non-gold contacts. The removal of the GaAs substrate prior to bonding provides an improved thermal pathway which leads to a reduction in wavelength shift with output power under continuous-wave (CW) excitation. Unlike prior work in which fullyfabricated VCSELs are flip-chip bonded to silicon, all photonic device processing takes place after the epitaxial transfer process. The electrical and optical performance of heterogeneously integrated 850nm GaAs VCSELs on silicon is compared to their as-grown counterparts. The demonstrated method creates the potential for the integration of III-V photonic devices with silicon CMOS, including CMOS imaging arrays. Such devices could have use in applications ranging from 3D imaging to LiDAR.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Leah Espenhahn, John Carlson, Patrick Su, and John Dallesasse "Heterogeneously integrated VCSELs on silicon", Proc. SPIE 12020, Vertical-Cavity Surface-Emitting Lasers XXVI, 120200J (2 March 2022); https://doi.org/10.1117/12.2608839
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Vertical cavity surface emitting lasers

Silicon

Wafer bonding

Gallium arsenide

Semiconductor lasers

Silicon photonics

Integration

RELATED CONTENT

Hybrid III-V/silicon lasers
Proceedings of SPIE (May 01 2014)
Hybrid vertical-cavity laser integration on silicon
Proceedings of SPIE (February 25 2017)
GaAs nano-ridge lasers on silicon (Conference Presentation)
Proceedings of SPIE (January 01 1900)

Back to Top