Paper
27 April 2000 Polymeric optoelectronic interconnects
Author Affiliations +
Abstract
Electrical interconnects are reaching their fundamental limits and are becoming the speed bottleneck as processor speeds are increasing. A polymer-based interconnect technology was developed for affordable integrated optical circuits that address the optical signal processing needs in the telecom, datacom, and performance computing industries. We engineered organic polymers that can be readily made into single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values and exceptional environmental stability, enabling use in a variety of demanding applications. A wide range of rigid and flexible substrates can be used, including glass, quartz, silicon, glass-filled epoxy printed circuit board substrates, and flexible plastic films. The devices we describe include a variety of routing elements that can be sued as part of a massively parallel photonic integrated circuit on the MCM, board, or backplane level.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Louay A. Eldada "Polymeric optoelectronic interconnects", Proc. SPIE 3952, Optoelectronic Interconnects VII; Photonics Packaging and Integration II, (27 April 2000); https://doi.org/10.1117/12.384397
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Waveguides

Mirrors

Optical interconnects

Data communications

Photomasks

Vertical cavity surface emitting lasers

Back to Top