Paper
17 May 2005 Failure and damage identification in woven composites with fiber Bragg grating sensors
Author Affiliations +
Abstract
In this study, measurements from low-impact velocity experiments and embedded and surface mounted optical fiber Bragg grating (FBG) sensors were used to obtain detailed information pertaining to damage progression in two-dimensional laminate woven composites. The woven composites were subjected to multiple strikes at 2m/s until perforation occurred, and the impactor position and acceleration were monitored throughout each event. From these measurements, we obtained dissipated energies and contact forces. The FBG sensors were embedded and surface mounted at different critical locations near penetration-induced damaged regions. These FBG sensors were used to obtain initial residual strains and axial and transverse strains that correspond to matrix cracking and delamination. The transmission and the reflection spectra were continuously monitored throughout the loading cycles. They were used, in combination with the peak contact forces, to delineate repeatable sensor responses corresponding to material failure. From the FBG spectra, fiber and matrix damage were separated by an analysis based on signal intensity, the presence of cladding modes, and the behavior of individual Bragg peaks as a function of evolving and repeated impact loads. This provided an independent feedback on the integrity of the Bragg gratings. A comparison by number of strikes and dissipated energies corresponding to material perforation indicates that embedding these sensors did not affect the integrity of the woven systems and that these measurements can provide accurate failure strains.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James Pearson, Mohanraj Prabhugoud, Mohammed Zikry, Kara Peters, Mike Sitar, and Luke Davis "Failure and damage identification in woven composites with fiber Bragg grating sensors", Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.599771
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fiber Bragg gratings

Sensors

Composites

Optical fibers

Reflection

Cladding

Eye

Back to Top