Paper
24 September 2010 Optical proximity correction challenges with highly elliptical contacts
Author Affiliations +
Abstract
The steady march of Moore's law demands ever smaller feature sizes to be printed and Optical Proximity Correction to correct to ever tighter dimensional tolerances. Recently pitch doubling techniques has relieved the pressure on CD reduction, which instead of being achieved lithographically are reduced by subsequent etching or chemical interaction with spin-on layers. CD tolerance reductions, however, still need to match the overall design rule shrinkage. The move to immersion lithography, where effective Numerical Apertures now reach 1.35, has been accompanied by a significantly reduction in depth of focus, especially on isolated contacts. To remedy this, RET techniques such as assist feature placement, have been implemented. Certain local placements of assist features and neighboring contacts are observed to result in highly elliptical contacts being printed. In some layouts small changes in the aspect ratio of the contact on the mask leads to strong changes in the aspect ratio of the printed contact, whereas in other layouts the response is very weak. This effect can be described as an aspect ratio MEEF. The latter type of contact can pose a significant challenge to the OPC recipe which is driven by the need to place the printed contour within a small range of distance from target points placed on the midpoint of edges of a nominally square contact. The OPC challenge naturally will be compounded when the target layout is rectangular in the opposite sense to the natural elliptical shape of the printed contact. Approaches to solving this can vary from intervening at the assist feature placement stage, at the possible loss of depth of focus, to accepting a certain degree of ellipticity in the final contour and making the OPC recipe concentrate on minimizing any residual errors. This paper investigates which contact layouts are most challenging, discusses the compromises associated with achieving the correction target and results are shown from a few different approaches to resolving these issues.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chris Cork, Levi Barnes, Yang Ping, Xiaohai Li, and Stephen Jang "Optical proximity correction challenges with highly elliptical contacts", Proc. SPIE 7823, Photomask Technology 2010, 78233R (24 September 2010); https://doi.org/10.1117/12.867247
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical proximity correction

Photomasks

Calibration

Manufacturing

Semiconducting wafers

Tolerancing

Critical dimension metrology

Back to Top