We experimentally demonstrate that circular oxide apertures with small side deformations of large-area 980 nm VCSELs contribute to an increase in the optical output power by more than 60% and in the quantum efficiency by more than 10%. We elaborate on the physical background of this behavior and its applicability to small aperture VCSELs. We show that the efficiency of stimulated emission can be enhanced by engineering the spectral structure of the resonator. Such an approach is used already to enhance spontaneous emission,but has been left unexplored in the context of the stimulated emission of VCSELs.
We experimentally demonstrate and elucidate by numerical simulations that breaking circular symmetry of large apertures of vertical-cavity surface-emitting lasers (VCSELs) significantly enhances their emission properties by increasing the optical density of states. Specifically, deformed shapes of circular oxide apertures of VCSELs enhance stimulated emission and suppress undesired non-radiative recombination contributing to an increase in output optical output power of more than 60% and in quantum efficiency of more than 10%. Our example deformed VCSEL structures demonstrate that the optical density of states appears to be of high importance for conventional optoelectronic devices in accordance to the predictions of quantum electrodynamics theory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.