Knowledge of the structure of vitreous floaters is crucial to evaluate the need for surgical removal of these floaters. We simulated the phase retrieval of microstructures simulating vitreous floaters by an algorithm PhaseLift and investigate the effects of various parameters on the retrieved phase. The object under test was modulated and the coded diffraction patterns were calculated. Next, PhaseLift was used to retrieve the phase. In the current study, we simulate the effect of Gaussian and Poison noise on the phase retrieval of pure phase objects. We apply an iterative algorithm PhaseLift for phase retrieval as this algorithm requires a very few modulating masks and is able to retrieve the phase of an object from very sparse data. Both types of noise are added to the intensity measurements and their effect on the retrieved phase is assessed in terms of the root-mean-square error. We conclude that Poisson noise compromises the accuracy of phase retrieval more compared to Gaussian noise given that the levels of both types of noise are equal. We also conclude that the thermal noise having nearly Gaussian distribution is of less importance compared to the shot noise having Poisson distribution and dominating at low-light levels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.