We report development of 85µm core Yb-doped and Ge-doped chirally-coupled-core (CCC) fibers, and their integration via fusion-splicing into an all-fiber optical amplifier system. This system, consisting of a CCC fiber amplifier and a 6+1 fusion-spliced signal-pump-combiner with a passive CCC fiber feed-through produces robust single mode output (diffraction-limited) in a counter-pumped configuration with passive-fiber leads as short as ~30cm. The Yb-doped 85µm core CCC fiber amplifiers had produced ~10mJ energy pulses at close to ~100W of average power. This achieved performance and monolithic all-fiber integration are required for compact and robust coherently-combined laser array drivers of laser plasma accelerators.
We demonstrate, to our knowledge, the first operation of a simultaneous spatial combining and CPSA system that provides 9mJ from two amplifier channels and coherently stacks 81 pulses to a single pulse and compresses the output to ~515fs duration. This demonstrates that CPSA with spatial coherent combining enables energy scaling of ultrashort pulses with fewer parallel channels. Future work will involve increasing energy per channel, average power per channel, the number of fiber channels and reducing the pulse duration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.