In this presentation, we detail the optical fiber-feed system for the new ultra-precise radial velocity spectrometer – NEID, which is an ultrastable instrument spanning a wavelength range of 380 to 930 nm. We discuss the various subsystems of the optical fiber-feed, including the process of design, assembly and testing of each component to ensure that it meets the strict requirements to achieve the instrumental precision goal for NEID.
NEID is a high resolution echelle spectrograph designed to enable extremely precise Doppler radial velocity observations of stars in the 380-930nm wavelength range1. It has recently been installed at the 3.5m WIYN telescope at Kitt Peak National Observatory, and is currently being commissioned. The design is based on a white pupil layout with a monolithic parabolic primary mirror and a 195mm pupil size on the R4 Echelle grating. Here we describe the optical and mechanical design, assembly, and alignment of the fiber injection system which converts the native focal ratio of the sky, calibration, and science fibers to the focal ratio required to form the 195mm collimated beam.
NEID is a radial velocity (RV) instrument including an ultra-stabilized fiber-fed spectrograph, installed in 2019 at the 3.5m WIYN telescope at Kitt Peak National Observatory. Accompanying it is a solar feed system built to supply the spectrograph with disk-integrated sunlight. Observing the Sun “as a star” is essential for developing and validating mitigation strategies for RV variations due to stellar activity and instrument systematics, thus enabling more-effective detections of lower-mass exoplanets. In this paper, we will detail the design of the NEID solar feed system and showcase early results addressing NEID systematics and solar RV variability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.