Every year, 60,000 lives are lost worldwide from disasters.1 Building collapse during earthquakes account for the majority of these deaths.2 Unreinforced masonry (URM) buildings are particularly vulnerable during seismic events due to the brittle nature of the construction material. Many communities have undertaken costly and timely mitigation programs to locate and retrofit or replace them before disaster strikes. An automated approach for identifying seismically vulnerable buildings using street level imagery has been met with limited success to this point with no promising results presented in literature. We achieved the best overall accuracy reported to date, at 83.6%, in identifying unfinished URM, finished URM, and non-URM buildings. Moreover, an accuracy of 98.8% was achieved for identifying both suspected URMs (finished or unfinished URM). We perform extensive empirical analysis to establish synergistic parameters on our deep neural network, namely ResNeXt-101-FixRes. Lastly, we present a visualization for the layers in the network to ascertain and demonstrate how the deep neural network can distinguish between material and geometric features to predict the type of URM building.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.