Here we explore ways of transforming laser radiation into incoherent and coherent electromagnetic radiation using laserdriven plasma waves. We present several examples based on the laser wakefield accelerator (LWFA) and show that the electron beam and radiation from the LWFA has several unique characteristics compared with conventional devices. We show that the energy spread can be much smaller than 1% at 130-150 MeV. This makes LWFAs useful tools for scientists undertaking time resolved probing of matter subject to stimuli. They also make excellent imaging tools. We present experimental evidence that ultra-short XUV pulses, as short as 30 fs, are produced directly from an undulator driven by a LWFA, due to the electron bunches having a duration of a few femtoseconds. By extending the electron energy to 1 GeV, and for 1-2 fs duration pulses of 2 nm radiation peak powers of several MW per pC can be produced. The increased charge at higher electron energies will increase the peak power to GW levels, making the LWFA driven synchrotron an extremely useful source with a spectral range extending into the water window. With the reduction in size afforded by using LWFA driven radiation sources, and with the predicted advances in laser stability and repletion rate, ultra-short pulse radiation sources should become more affordable and widely used, which could change the way science is done.
The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm−1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr−1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.
As an alternative modality to conventional radiotherapy, electrons with energies above 50 MeV penetrate deeply into tissue, where the dose can be absorbed within a tumour volume with a relatively small penumbra. We investigate the physical properties of VHEEs and review the state-of-the-art in treatment planning and dosimetry. We discuss the advantages of using a laser wakefield accelerator (LWFA) and present the characteristic features of the electron bunch produced by the LWFA and compare them with that from a conventional linear accelerator.
Both the laser-plasma wakefield accelerator (LWFA) and X-ray phase-contrast imaging (XPCi) are promising technologies that are attracting the attention of the scientific community. Conventional X-ray absorption imaging cannot be used as a means of imaging biological material because of low contrast. XPCi overcomes this limitation by exploiting the variation of the refraction index of materials. The contrast obtained is higher than for conventional absorption imaging and requires a lower dose. The LWFA is a new concept of acceleration where electrons are accelerated to very high energy (~150 MeV) in very short distances (mm scale) by surfing plasma waves excited by the passage of an ultra-intense laser pulse (~1018 Wcm-2) through plasma. Electrons in the LWFA can undergo transverse oscillation and emit synchrotron-like (betatron) radiation in a narrow cone around the propagation axis. The properties of the betatron radiation produced by LWFA, such as source size and spectrum, make it an excellent candidate for XPCi. In this work we present the characterization of betatron radiation produced by the LWFA in the ALPHA-X laboratory (University of Strathclyde). We show how phase contrast images can be obtained using the betatron radiation in a free-space propagation configuration and we discuss the potential and limitation of the LWFA driven XPCi.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma
accelerators for the production of ultra-short electron bunches with subsequent generation of high brilliance,
short-wavelength radiation pulses. Ti:sapphire laser systems with peak power in the range 20-200 TW are coupled into
mm- and cm-scale plasma channels in order to generate electron beams of energy 50-800 MeV. Ultra-short radiation
pulses generated in these compact sources will be of tremendous benefit for time-resolved studies in a wide range of
applications across many branches of science. Primary mechanisms of radiation production are (i) betatron radiation due
to transverse oscillations of the highly relativistic electrons in the plasma wakefield, (ii) gamma ray bremsstrahlung
radiation produced from the electron beams impacting on metal targets and (iii) undulator radiation arising from
transport of the electron beam through a planar undulator. In the latter, free-electron laser action will be observed if the
electron beam quality is sufficiently high leading to stimulated emission and a significant increase in the photon yield.
All these varied source types are characterised by their high brilliance arising from the inherently short duration (~1-10
fs) of the driving electron bunch.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.