We present in this proceeding the results of the test phase of the GRAVITY+ adaptive optics. This extreme AO will enable both high-dynamic range observations of faint companions (including exoplanets) thanks to a 40×40 sub-apertures wavefront control, and sensitive observations (including AGNs) thanks to the addition of a laser guide star to each UT of the VLT. This leap forward is made thanks to a mostly automated setup of the AO, including calibration of the NCPAs, that we tested in Europe on the UT+atmosphere simulator we built in Nice. We managed to reproduce in laboratory the expected performances of all the modes of the AO, including under non-optimal atmospheric or telescope alignment conditions, giving us the green light to proceed with the Assembly, Integration and Verification phase in Paranal.
We present the Wavefront Sensor units of the Gravity Plus Adaptive Optics (GPAO) system, which will equip all 8m class telescopes of the VLTI and is an instrumental part of the GRAVITY+ project. It includes two modules for each Wavefront Sensor unit: a Natural Guide Star sensor with high-order 40×40 Shack-Hartmann and a Laser Guide Star 30×30 sensor. The state-of-the-art AO correction will considerably improve the performance for interferometry, in particular high-contrast observations for NGS observations and all-sky coverage with LGS, which will be implemented for the first time on VLTI instruments. In the following, we give an overview of the Wavefront Sensor units system after completion of their integration and characterization.
The Evanescent Wave Coronagraph (EvWaCo) exploits the frustration of the total internal reflection (FTIR) between a prism and a lens put in contact. The starlight is transmitted through the contact area while the light from the companion is reflected. An EvWaCo prototype, equipped with an adaptive optics (AO) system, will be installed at the 2.4m Thai National Telescope as an on-sky demonstrator of the EvWaCo mask’s achromatic capabilities while testing new AO control techniques. To characterize the Extreme Adaptive Optics System (XAO) for this prototype, we developed a bench equipped with a DM192 ALPAO deformable mirror, a 15×15 sub-apertures Shack-Hartmann wavefront sensor (SH-WFS), and a two-track phase plate simulating an average seeing of 1.4" at the Thai National Telescope, and the best seeing at 1.00". Following our previous communications on the characterization of the DM and the phase plate, we present how we calibrate the sensor for the WFS and the interaction matrix. This paper presents preliminary results obtained from experiments after closing the loop using a leaky integrator.
Initially designed to detect and characterize exoplanets, extreme adaptive optics systems (AO) open a new window on the solar system by resolving its small bodies. Nonetheless, despite the always increasing performances of AO systems, the correction is not perfect, degrading their image and producing a bright halo that can hide faint and close moons. Using a reference point spread function (PSF) is not always sufficient due to the random nature of the turbulence. In this work, we present our method to overcome this limitation. It blindly reconstructs the AO-PSF directly in the data of interest, without any prior on the instrument nor the asteroid’s shape. This is done by first estimating the PSF core parameters under the assumption of a sharp-edge and flat object, allowing the image of the main body to be deconvolved. Then, the PSF faint extensions are reconstructed with a robust penalization optimization, discarding outliers on-the-fly such as cosmic rays, defective pixels and moons. This allows to properly model and remove the asteroid’s halo. Finally, moons can be detected in the residuals, using the reconstructed PSF and the knowledge of the outliers learned with the robust method. We show that our method can be easily applied to different instruments (VLT/SPHERE, Keck/NIRC2), efficiently retrieving the features of AO-PSFs. Compared with state-of-the-art moon enhancement algorithms, moon signal is greatly improved and our robust detection method manages to discriminate faint moons from outliers.
In the context of the GRAVITY+ upgrade, the adaptive optics (AO) systems of the GRAVITY interferometer are undergoing a major lifting. The current CILAS deformable mirrors (DM, 90 actuators) will be replaced by ALPAO kilo-DMs (43×43, 1432 actuators). On top of the already existing 9×9 Shack-Hartmann wavefront sensors (SH-WFS) for infrared (IR) natural guide star (NGS), new 40×40 SH-WFSs for visible (VIS) NGS will be deployed. Lasers will also be installed on the four units of the Very Large Telescope to provide a laser guide star (LGS) option with 30×30 SH-WFSs and with the choice to either use the 9×9 IR-WFSs or 2×2 VIS-WFSs for low order sensing. Thus, four modes will be available for the GRAVITY+ AO system (GPAO): IR-NGS, IR-LGS, VIS-NGS and VIS-LGS. To prepare the instrument commissioning and help the observers to plan their observations, a tool is needed to predict the performances of the different modes and for different observing conditions (NGS magnitude, science object magnitude, turbulence conditions...) We developed models based on a Maréchal approximation to predict the Strehl ratio of the four GPAO modes in order to feed the already existing tool that simulates the GRAVITY performances. Waiting for commissioning data, our model was validated and calibrated using the TIPTOP toolbox, a Point Spread Function simulator based on the computation of Power Spectrum Densities. In this work, we present our models of the NGS modes of GPAO and their calibration with TIPTOP.
Performances of an adaptive optics (AO) system are directly linked with the quality of its alignment. During the instrument calibration, having open loop fast tools with a large capture range are necessary to quickly assess the system misalignment and to drive it towards a state allowing to close the AO loop. During operation, complex systems are prone to misalignments (mechanical flexions, rotation of optical elements, etc.) that potentially degrade the AO performances, creating a need for a monitoring tool to tackle their driftage. In this work, we first present an improved perturbative method to quickly assess large lateral errors in open loop. It uses the spatial correlation of the measured interaction matrix of a limited number of 2D spatial modes with a synthetic model. Then, we introduce a novel solution to finely measure and correct these lateral errors via the closed loop telemetry. Non-perturbative, this method consequently does not impact the science output of the instrument. It is based on the temporal correlation of 2D spatial frequencies in the deformable mirror commands. It is model-free (no need of an interaction matrix model) and sparse in the Fourier space, making it fast and easily scalable to complex systems such as future extremely large telescopes. Finally, we present some results obtained on the development bench of the GRAVITY+ extreme AO system (Cartesian grid, 1432 actuators). In addition, we show with on-sky results gathered with CHARA and GRAVITY/CIAO that the method is adaptable to non-conventional AO geometries (hexagonal grids, 60 actuators).
The Evanescent Wave Coronagraph uses a focal plane mask comprising a lens and a prism placed in contact so that frustrated total internal reflection can occur - the principle governing starlight attenuation. This type of Lyot coronagraph has three main capabilities: i) the mask adapts itself to the wavelength, ii) the size of the mask is adjustable by pressure adjustment, and iii) both the light coming from the star and companion can be collected simultaneously. Previous experimental results, obtained without adaptive optics and in unpolarized light, showed a raw contrast of 10−4 at 3 λ/D in the I-band and at 4 λ/D in the R-band. Its performance has been limited so far by uncorrected residual aberrations of the optical bench that generate speckles close to the inner working angle. To study the mask performances close to the diffraction limit and compare them with theoretical models, a deformable mirror is installed in the optical path of the testbed to perform wavefront correction. In this work, we report the results obtained in the laboratory using this upgraded setup. We show the preliminary results of correcting the non-common path aberrations using the scientific camera as the wavefront sensor and compare them with expected theoretical performances. The corrections are applied after finding the optimal commands that maximize the variance at the detector plane.
The Evanescent Wave Coronagraph (EvWaCo) is a type of Lyot coronagraph that uses an achromatic focal plane mask comprising a lens and a prism in contact. The National Astronomical Research Institute of Thailand (NARIT) plans to install an EvWaCo prototype equipped with an adaptive optics system (AO) to correct the aberrated wavefront in real-time at the unused left Nasmyth port of the Thai National telescope. To prepare for this installation, a large adapter with a diameter of 1.3 m and twelve carbon fiber poles serve as the supporting beams to hold the prototype. This work focuses on the mechanical design and testing of the large adapter, considering the prototype requirements and installation limitations. In particular, mechanical deformations and stress distributions are analyzed under survival conditions. The maximum weight of the prototype is 200 kg, and a folding mirror installed in a translation stage is placed inside the large adapter. The structural optimization uses the finite element method to deal with the constraints and ensures a high performance. The carbon fiber poles comprise carbon fiber-reinforced polymer (CFRP) that reduce the weight by approximately 30% compared to an all-aluminum structure. Each carbon fiber pole weighs about 1.75 kg, and our testing results show that it can support up to eight times the prototype's weight. The epoxy adhesive, used to join different materials, can withstand a pull-out strength of up to three times the prototype's weight. The installation of this adapter is expected to start by the end of 2024.
The National Astronomical Research Institute of Thailand, together with the Institut d’Optique Graduate School and Centre de Researche Astrophysique de Lyon, has been developing the Evanescent Wave Coronagraph (EvWaCo) a new kind of Lyot coronagraph that uses a lens and prism placed in contact as its focal plane mask. By the principle of frustrated total internal reflection, EvWaCo enables an achromatic rejection and ability to collect the light from the star and the companion. An EvWaCo prototype equipped with adaptive optics will be installed at the Thai National Telescope as an on-sky demonstrator. This demonstrator will work on a 1.2 × 0.8 m2 elliptical sub-aperture of the Thai National Telescope to reach a raw contrast of 10−4 at 3λ/D over the wavelength range [600 nm, 900 nm]. The completed optical design contains all the essential light path channels in high contrast imaging fitted inside a 960 mm×960 mm optical breadboard, namely the guiding camera channel, companion channel, star channel, and wavefront sensing channel. We also show the results of the tolerancing and straylight analysis.
We present the results obtained with an end-to-end simulator of an Extreme Adaptive Optics (XAO) system control loop. It is used to predict its on-sky performances and to optimise the AO loop algorithms. It was first used to validate a novel analytical model of the fitting error, a limit due to the Deformable Mirror (DM) shape. Standard analytical models assume a sharp correction under the DM cutoff frequency, disregarding the transition between the AO corrected and turbulence dominated domains. Our model account for the influence function shape in this smooth transition. Then, it is well-known that Shack-Hartmann wavefront sensors (SH-WFS) have a limited spatial bandwidth, the high frequencies of the wavefront being seen as low frequencies. We show that this aliasing error can be partially compensated (both in terms of Strehl ratio and contrast) by adding priors on the turbulence statistics in the framework of an inverse problem approach. This represents an alternative to the standard additional optical filter used in XAO systems. In parallel to this numerical work, a bench was aligned to experimentally test the AO system and these new algorithms comprising a DM192 ALPAO deformable mirror and a 15x15 SH-WFS. We present the predicted performances of the AO loop based on end-to-end simulations.
The Evanescent Wave Coronagraph (EvWaCo) is an achromatic coronagraph mask with adjustable size over the spectral domain [600nm, 900nm] that will be installed at the Thai National Observatory. We present in this work the development of a bench to characterise its Extreme Adaptive Optics system (XAO) comprising a DM192 ALPAO deformable mirror (DM) and a 15x15 Shack-Hartmann wavefront sensor (SH-WFS). In this bench, the turbulence is simulated using a rotating phase plate in a pupil plane. In general, such components are designed using a randomly generated phase screen. Such single realisation does not necessarily provide the wanted structure function. We present a solution to design the printed pattern to ensure that the beam sees a strict and controlled Kolmogorov statistics with the correct 2D structure function. This is essential to control the experimental conditions in order to compare the bench results with the numerical simulations and predictions. This bench is further used to deeply characterise the full 27 mm pupil of the ALPAO DM using a 54x54 ALPAO SH-WFS. We measure the average shape of its influence functions as well as the influence function of each single actuator to study their dispersion. We study the linearity of the actuator amplitude with the command as well as the linearity of the influence function profile. We also study the actuator offsets as well as the membrane shape at 0-command. This knowledge is critical to get a forward model of the DM for the XAO control loop.
The Center for Optics and Photonics of the National Astronomical Research Institute of Thailand, together with the Institut d’Optique Graduate School and the Centre de Recherche Astrohpysique de Lyon (CRAL), is currently developing the Evanescent Wave Coronagraph (EvWaCo). The coronagraph relies on the tunneling effect to produce a fully achromatic focal plane mask (FPM) with an adjustable size. The full instrument comprises a coronagraph and adaptive optics system that will be mounted on the Thai National Telescope and is specified to reach a raw contrast of 10−4 at an inner working angle of 3 Airy radii. The coronagraph will be used to perform high contrast observations of stellar systems during on-sky observations over the spectral domain [600 nm, 900 nm]. In this paper, we present the opto-mechanical design of the EvWaCo prototype and the performance measured in laboratory conditions. We also discuss the potential applications for space-based observations and the development plan under this project in the next five years.
Research is continuously developing imaging methods to better understand the structure and function of biological systems. In this paper, we describe our work to develop lens-free microscopy as a novel mean to observe and quantify cells in 2D and 3D cell culture conditions.
At first, we developed a lens-free video microscope based on multiple wavelength acquisitions to perform time-lapse 2D imaging of dense cell culture inside the incubator. We demonstrated that novel phase retrieval techniques enable imaging thin cell samples with high concentration (~15000 cells over a large field of view of 29.4 mm2). The experimental data can next be further analyzed with existing cell profiling and tracking algorithms. As an example, we showed that a 7 days acquisition of a culture of HeLa cells leads to a dataset featuring 2.106 cell point measurements and 104 cell cycle tracks.
Recently, we extended our work to the video-microscopy of 3D organoids culture. We showed the capability of lens-free microscopy to perform 3D+time acquisitions of 3D organoids culture. To our knowledge, our technique is the only one able to reconstruct very large volumes of 3D cell culture (~5 mm3) by phase contrast imaging. This new mean of microscopy allowed us to observe a broad range of phenomena present in 3D environments, e.g. self-organizations, displacement of large clusters, merging and interconnection over long distances (>1 mm). In addition, this 3D microscope can capture the interactions of single cells and organoids with their 3D environment, e.g. traction forces generated by large cell aggregates over long distances, up to 1.5 mm.
Overall, lens-free microscopy techniques favor ease of use and label-free experimentations as well as time-lapse acquisitions of large datasets. Importantly, we consider that these lens-free microscopy technique can thus expand the repertoire of phenomena that can be studied within 2D and 3D organoids cultures.
We propose a three-dimensional (3D) imaging platform based on lens-free microscopy to perform multi-angle acquisitions on 3D cell cultures embedded in extracellular matrix (ECM). We developed algorithms based on the Fourier diffraction theorem to perform fully 3D reconstructions of biological samples and we adapted the lens-free microscope to incubator conditions. Here we demonstrate for the first time, 3D+time lens-free acquisitions of 3D cell culture over 8 days directly into the incubator. The 3D reconstructed volume is as large as ~5 mm3 and provides a unique way to observe in the same 3D cell culture experiment multiple cell migration strategies. Namely, in a 3D cell culture of prostate epithelial cells embedded within a Matrigel® matrix, we are able to distinguish single cell ’leaders’, migration of cell clusters, migration of large aggregates of cells, and also close-gap and large-scale branching. In addition, we observe long-scale 3D deformations of the ECM that modify the geometry of the 3D cell culture. Interestingly, we also observed the opposite, i.e. we found that large aggregates of cells may deform the ECM by generating traction forces over very long distances. In sum we put forward a novel 3D lens-free microscopy tomographic technique to study the single and collective cell migrations, the cell-to-cell interactions and the cell-to-matrix interactions.
We propose a new imaging platform based on lens-free time-lapse microscopy for 3D cell culture and its dedicated algorithm lying on a fully 3D regularized inverse problem approach. First 3D+t results are presented
New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to ~ 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.