The effect of non-ideal dispersion and reflection characteristics of chirped fiber Bragg gratings (CFBG)
on the 40-Gb/s and 10-Gb/s transmission is investigated. The effect of group delay ripple (GDR) on
eye-opening penalty (EOP) of carrier-suppressed return-to-zero (CSRZ) and return-to-zero (RZ)
formats is analyzed and compared. The system penalty for different amplitude and period ripples are
quantified.
A simple theoretical model is proposed for the study of timing jitter induced by intrachannel corss-phase modulation
(IXPM) in chirped fiber grating (CFG) compensating systems. The mechanism how CFG reduces the timing jitter is
studied in detail, theoretically and numerically. The reason why symmetrical power and dispersion scheme could
guarantee zero timing jitter is analyzed.
In this paper we mainly discuss the low-cost way to improve the performances of wavelength routed optical networks. It
is really a tough work to reduce the probability of traffic loss due to the lack of abundant lightpath between arbitrary
nodes connected by precious wavelengths. Aiming to solve the problem, we probe an economical proposal that local
optical nodes can be equipped with extra receiving components with cheap Chirp Bragg Gratings. Under the
experimental platform of single-direction double-fibers optical network rings, this scheme has been verified, showing
the result that the traffic loss ratio can be reduced significantly by adding more Chirp Bragg Gratings especially under
heavy service loads. Consequently, it is feasible to improve the performance of all optical networks with several groups
of Chirp Bragg grating fibers with whole consideration of cost-effective optical network design.
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference
information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory
and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental
optical network has been testified with best switching strategies by employing the novel numerical solution designed
with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are
accordance with the ones with the traditional fictitious play method.
The dispersion of 8×10Gb/s wavelength division multiplex (WDM) system has been compensated by the cascaded chirped fiber Bragg gratings(CFBGs), with ITU-T standard wavelengths and wavelength grid. The ASE of the EDFA could be reduced, the OSNR of the transmitted signal could be increased and the fluctuation of the EDFA gain could be controlled in the certain scope by the dispersion compensated CFBGs' WDM system. Impact of cascaded CFBGs' delay ripple on dispersion compensation has been analyzed. Experiment of error-free 8×10Gb/s 2015km transmission without forward error correction (FEC) and electronic repeaters were demonstrated. In the transmission, simplex CFBGs compensators were used and no other form of dispersion compensators were adopted. The experiment result showed that the consistency of the dispersion compensating in each channel is perfect over 2015km optical fiber transmission. The experiment result does agree with the theoretic analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.