Securing information has been a concern for more than 4,000 years, but in the times in which we are connecting every single aspect of our businesses and lives, developing secure products and infrastructures has become a global priority. Remarkably, quantum technologies bring unique possibilities for the cryptographic world. In this talk, we will describe recent efforts on the development of a highly integrated quantum entropy source, a key component to generate unpredictable cryptographic keys in any connected device. In particular, we will present the integration of two quantum entropy sources, one in Silicon Photonics and the other in Indium Phosphide. The devices are based on the accelerated phase diffusion process observed in pulsed semiconductor lasers, a macroscopic quantum effect resulting from microscopic spontaneous emission events. Both chip implementations enable Gb/s generation rates in form factors below 2mm x 5mm in indium Phosphide and 0.5mm x 1mm in Silicon Photonics. Our results show progress towards the industrialization of quantum devices using standard semiconductor production lines and processes.
John Bell’s theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell’s inequalities. Employing modifications of Bell’s inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10-31, corresponding to an 11.5 standard deviation effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.