Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering these wavelength regions have received significant attention from potential users, as there is a wide array of applications for which there are few suitable alternative light sources – if any. Our developments in the field of Mid-IR supercontinuum sources have been based on radical approaches; such as soft glasses and novel pumping schemes, whereas shifting the spectrum further towards the UV has been based on sophisticated microstructure fiber designs. Here we present our latest developments in tailoring the power and spectral coverage of spatially coherent broadband supercontinuum sources.
Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density
and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off
modulating the pump diodes of the fiber laser, the relaxation oscillations of the laser can be exploited to enhance the
broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the
zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output
power of up to 30 W can be maintained and the spectral width can be improved by 90%. The zero dispersion wavelength
should be close to but below the pump wavelength to achieve the most visible light. By increasing the nonlinearity the
fiber length can be reduced from 100 m to 25 m and the efficiency of visible light generation is improved by more than
200%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.