Narrow-band imaging (NBI) bronchoscopy offers enhanced visualization of microvascular structures in the lung’s epithelium (airway walls). Recent studies suggest that such vessels are helpful in predicting the invasiveness of bronchial lesions. In particular, Shibuya characterized pathological features of lesions and studied their relationship with specific histological stages of lung cancer. We propose a method for identifying these vascular patterns using a small expert-labeled dataset. Our approach is based on a few-shot learning method using a Siamese network to learn and distinguish pathological features of the bronchial vasculature. We achieved better intra-class clustering and inter-class separation in the embedding space compared to a baseline CNN classifier. Further, a 25% increase in the overall accuracy was obtained during testing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.