Ability to detect individual photons in the mid-ir is crucial for many astronomical applications and detector technology is the vital part of instrumentation for future space missions. The search for bio signatures through transiting exoplanet spectroscopy requires an array of detectors covering the spectral range of 2.8 to 20μm. Superconducting nanowire single-photon detectors (SNSPDs) are highly efficient and low-noise devices ideal for counting and observing low levels of photons. They have near-perfect quantum efficiency and can be combined into arrays for imaging. Here, we report on the development of 36-pixel mid-infrared SNSPD arrays. Detectors are based on optimised ultrathin NbN films, which are grown by both magnetron sputtering and atomic layer deposition (ALD) techniques. For characterisation we assembled a setup based on tuneable optical parametric oscillator (OPO) source to provide picosecond long pulses in the 1.5 to 10μm spectral region. This work provides an analysis of the electrical, optical, and temporal performance of individual pixels as well as information on pixel performance uniformity across the array.
In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the state-of-the-art for photodetection in infrared regime. However, there are technical challenges still need addressing, such as high non-uniformity in SNSPD arrays, high polarization sensitivity, lack of cryogenic ROIC, and lack of high-performance devices in the mid-IR regime. During this talk, I will discuss our current work on overcoming some of these challenges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.