Hard X-ray fluorescence microscopy is one of the most sensitive techniques to perform trace elemental analysis of
unsectioned biological samples, such as cells and tissues. As the spatial resolution increases beyond sub-micron
scale, conventional sample preparation method, which involves dehydration, may not be sufficient for preserving
subcellular structures in the context of radiation-induced artifacts. Imaging of frozen-hydrated samples under
cryogenic conditions is the only reliable way to fully preserve the three dimensional structures of the samples while
minimizing the loss of diffusible ions. To allow imaging under this hydrated “natural-state” condition, we have
developed the Bionanoprobe (BNP), a hard X-ray fluorescence nanoprobe with cryogenic capabilities, dedicated to
studying trace elements in frozen-hydrated biological systems. The BNP is installed at an undulator beamline at Life
Sciences Collaboration Access Team at the Advanced Photon Source. It provides a spatial resolution of 30 nm for
fluorescence imaging by using Fresnel zone plates as nanofocusing optics. Differential phase contrast imaging is
carried out in parallel to fluorescence imaging by using a quadrant photodiode mounted downstream of the sample.
By employing a liquid-nitrogen-cooled sample stage and cryo specimen transfer mechanism, the samples are well
maintained below 110 K during both transfer and X-ray imaging. The BNP is capable for automated tomographic
dataset collection, which enables visualization of internal structures and composition of samples in a nondestructive
manner. In this presentation, we will describe the instrument design principles, quantify instrument performance,
and report the early results that were obtained from frozen-hydrated whole cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.