This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The historical development of multiphoton microscopy is described, starting with a review of two-photon absorption, and including two- and three-photon fluorescence microscopies, and second- and third-harmonic generation microscopies. The effects of pulse length on signal strength and breakdown are considered. Different contrast mechanisms, including use of nanoparticles, are discussed. Two new promising techniques that can be applied to multiphoton microscopy are described.
ISM can be performed in fluorescence, bright field or interference microscopy. Several different implementations have been described, with associated advantages and disadvantages. In two-photon microscopy, the illumination and detection point spread functions are very different. This is also the case when using pupil filters or when there is a large Stokes shift.
This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.
Using an optically-addressable liquid crystal spatial light modulator to generate phase only filters
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one