The process of observing the Sun in the x-ray and extreme UV (XUV), as we are now doing with the TRACE telescope, requires blocking the tremendous amount of visible and RI light that dominates the flux from the sun. If it is not blocked, the energy will swamp the desired spectrum and cause thermal problems inside the telescope. The most effective approach removing the energy is by filtering the incoming light. One of the best materials for eliminating the undesirable wavelengths is aluminum, which is semi- transparent to x-ray and XUV, but blocks most light with wavelength redward of 850 angstrom. Unfortunately the aluminum must be extremely must be extremely thin, < 1600 angstrom thick, to provide the necessary XUV transparency. To overcome the structural problem of supporting large areas of extremely thin aluminum, the aluminum film is bonded on a nickel mesh.
HIREX is a suite of three complementary solar-pointed instruments that is being proposed to NASA under the NASA MIDEX announcement of opportunity. The main instrument is a 0.6m clear aperture, 240m effective focal length normal incidence XUV telescope operated at 171 angstrom, with a spatial resolution of 0.01 inch. This main telescope is complemented by two other instruments: 1) a 0.3 m context telescope that images in a wavelength range that covers the UV and XUV spectral regime, based on the TRACE design. This context telescope places the high magnification, limited field of view images created by the high resolution telescope in both spatial and temperature context. 2) A spectrometer covering the spectral range from 170-220 angstrom, based on the SERTS design.
Conference Committee Involvement (1)
Gravitational Wave and Particle Astrophysics Detectors
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.