Active nematics are out-of-equilibrium liquid crystal fluids composed of rod-like subunits, which can generate large-scale, self-driven flows. In this emerging field of active nematics, new methods are needed to investigate and potentially control phase structure and dynamics. The use of complex engineered surfaces using microfabrication is an excellent way to control local orientation directors, taking advantage of the interplay between surface curvatures and topological defects. Epoxy-based lithography represents a simple and appealing approach, using low cost, minimal materials and a time efficient process. In this manuscript, we discuss methods for optimized fabrication protocols using negative and positive tone epoxy-based photoresists to create microfluidic devices for active matter. Arrays of curved objects and submerged topographies can be used to generate a variety of liquid crystal defect configurations not typically observed on unconfined planar surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.