In this study, we investigated the assessment of the damaged area on composites ballistic plates subjected to high velocity impact. The active pulsed thermography technique was used for performing post-mortem analysis of the impacted specimens. Quantitative analysis of the damaged areas shows consistent results with the size of the projectile suggesting high precision of the quantification done in this work. This quantitative defect analysis combined with knowledge of projectile velocity allows for characterization of absorbed energy and differentiation of generated defect types. This allow for the evaluation of material efficiency in spreading absorbed energy over large areas. Our observations indicate that high velocity shots tend to induce smaller impact damage areas characterized primarily by fiber breakage, while low velocity shots tend to induce larger impact damage areas featuring predominantly delamination and matrix cracking damage mechanisms.
The integration of thermal infrared (TIR) hyperspectral systems into Unmanned Aerial Vehicles (UAVs) platforms is expected to open doors toward a wide variety of demanding thermal imaging applications ranging from academics and research to industry. Currently, the UAV remote sensing technology in TIR region is still in its infancy and the main expectations are the reduction of both, sensor sizes and cost while maintaining their performances at a high level.
In this communication, we report on Telops newly designed compact, light and robust TIR hyperspectral module of less than 10 kg with about 50W of power consumption. The new module can be integrated into a complete stand-alone imager with applications such as 360˚ Hyperspectral Surveillance. Integration in complete, highly flexible UAV based, infrared hyperspectral imaging solutions, such as airborne real-time gas detection, identification and quantification is also possible.
The need for a reliable and cost-efficient gas detection system is of prime importance especially when security threatening situations like gas leaks and emissions occur. The knowledge of the precise localization of the leaks, identification of the chemical nature of the gases involved and quantification of the gas flux emanating from the leaks are the crucial inputs needed for the incident response team to take actions based on relevant information. In this regard, UAVs based TIR remote sensing technology offers many benefits over traditional gas detection systems as it allows safely monitoring and imaging of large areas. The sensor can fly several hundreds of meters above the scene, avoiding the need to access restricted and potentially dangerous zones in the installations.
Beside the newly designed compact and light TIR hyperspectral module, Telops have also developed solutions for gas detection and identification along with some tools for the quantification of gas flow rates emanating for leak source. These solutions were recently demonstrated during a flight campaign up to 4600 feet above the ground for detection and identification of ethylene, methanol and acetone gas release experiment. The Fourier transform technology used in our hyperspectral imaging systems on an airborne platform allows recording of airborne hyperspectral data using mapping and targeting modes. These two acquisition modes were used for gas detection and real time quantitative airborne chemical images of the three gas clouds were obtained paving the path toward a viable solution for gas leak surveys and environmental monitoring.
The hyperspectral chemical mapping of open mines exploited by industries are among the possible applications that could possibly benefit from thermal infrared long-distance survey. More specifically the cement production essential in the constructions of our cities. The cement is made by mixing different raw materials and firing them in order to achieve precise chemical proportions of lime, silica, alumina and iron in the finished product. The quality of cement is therefore directly related to the chemistry of the raw materials used. Approximately 80 to 90% of the raw material is limestone. Clayey raw material accounts for between 10 to 15%, although precise amounts vary. Magnesium carbonate, which may be present in limestone, is the main undesirable impurity. The level of magnesia (MgO) should not exceed 5% and many producers prefer a maximum of 3%; this excludes dolomite or dolomitic limestones for the manufacture of cement.
In this work, we conducted thermal infrared (TIR) hyperspectral imaging for mineral mapping and mineralogy identification on a pit wall with Juracement at Cornaux using hyperspectral camera. This passive thermal infrared hyperspectral research instrument based on Fourier transform spectroscopy provides high spectral resolution data. The solid targets such as minerals not only emit but also reflect thermal infrared radiation. Since the two phenomena occur simultaneously, they end-up mixed in the radiance measured at the sensor level. To unveil the spectral features associated with minerals from TIR measurements, the respective contributions of self-emission and reflection in the measurement must be «unmixed» using temperature-emissivity separation (TES) algorithms. We developed a new TES procedure that allowed us to retrieve the spectral emissivity of the different minerals in the investigated scene. The chemical maps of the calcite dolomite mixtures were obtained on the pit wall the investigations were carried out, giving important insights on chemical the quality of the mine.
Gas leaks and air pollution sources present to a certain extend health, safety and environmental risks. A history of crisis management in the Upstream has shown the value of efficient and accurate tools for detecting gas leakages and/or the characterization air pollution agents. Knowing about the existence of a leak or the existence of an environmental thread is not always enough to launch a corrective action. Additional critical inputs such as the leak source, the chemical nature of the gas cloud, its direction and speed and as well as the gas concentration must most of the time be gathered in a short amount of time to help securing the hazardous areas. Most of the time gas identification for gas leaks surveys or environmental monitoring purposes involve explosives and/or toxic chemicals. In such situations, airborne measurements present particular advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In this work, we present our recent results on real time airborne gas detection up to 4600 feet above the ground using thermal hyperspectral Imaging technology. The Fourier transform technology used in the longwave (8-12 micron) hyperspectral camera on an airborne platform allows recording of airborne hyperspectral data using mapping and targeting modes. These two acquisition modes were used for gas imaging a ground-based ethylene, Methanol and acetone gas release experiment. Real time quantitative airborne chemical images of the three gas clouds were obtained paving the path toward a viable solution for gas leak surveys and environmental monitoring.
Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among
the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and
temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress
response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were
carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FASTM2K)
and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a
polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared
imaging in the midwave infrared (MWIR, 3 – 5 μm) spectral range can provide detailed information about the thermal
properties of materials undergoing mechanical testing.
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane’s unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FAST-M2K) and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared imaging in the midwave infrared (MWIR, 3 – 5 μm) spectral range can provide detailed information about the thermal properties of materials undergoing mechanical testing.
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the EnfantJesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane’s unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride
and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems.
However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited
transparency in the visible spectral range. For this reason, the Université Laval’s Centre d’optique, photonique et laser
(COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared
imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality
fibers for the design of high-power mid-IR lasers.
Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.
Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems. However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited transparency in the visible spectral range. For this reason, the Université Laval's Centre d'optique, photonique et laser (COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality fibers for the design of high-power mid-IR lasers.
Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.
Characterization of hazardous lands using ground-based techniques can be very challenging. For this reason, airborne
surveys are often preferred. The use of thermal infrared imaging represents an interesting approach as surveys can be
carried out under various illumination conditions and that the presence of buried objects typically modifies the thermal
inertia of their surroundings. In addition, the burial or presence of a buried object will modify the particle size, texture,
moisture and mineral content of a small region around it. All these parameters may lead to emissivity contrasts which will
make thermal contrast interpretation very challenging. In order to illustrate the potential of airborne thermal infrared
hyperspectral imaging for buried object characterization, various metallic objects were buried in a test site prior to an
airborne survey. Airborne hyperspectral images were recorded using the targeting acquisition mode, a unique feature of
the Telops Hyper-Cam Airborne system which allows recording of successive maps of the same ground area. Temperatureemissivity
separation (TES) was carried out on the hyperspectral map obtained upon scene averaging. The thermodynamic
temperature map estimated after TES highlights the presence of hot spots within the investigated area. Mineral mapping
was carried out upon linear unmixing of the spectral emissivity datacube obtained after TES. The results show how the
combination of thermal information and mineral distribution leads to a better characterization of test sites containing buried
objects.
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal
broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR)
infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion
domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition
in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as
carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range.
Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity.
This information is not directly available from broadband images. However, spectral information is available using spectral
filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral
imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels
was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has
been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from
information obtained with the different spectral filters. Comparison with temperatures obtained using conventional
broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion
processes.
Characterization of hazardous lands using ground-based techniques can be very challenging. For this reason, airborne surveys are often preferred. The use of thermal infrared imaging represents an interesting approach as surveys can be carried out under various illumination conditions and that the presence of buried objects typically modifies the thermal inertia of their surroundings. In addition, the burial or presence of a buried object will modify the particle size, texture, moisture and mineral content of a small region around it. All these parameters may lead to emissivity contrasts which will make thermal contrast interpretation very challenging. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for buried object characterization, various metallic objects were buried in a test site prior to an airborne survey. Airborne hyperspectral images were recorded using the targeting acquisition mode, a unique feature of the Telops Hyper-Cam Airborne system which allows recording of successive maps of the same ground area. Temperatureemissivity separation (TES) was carried out on the hyperspectral map obtained upon scene averaging. The thermodynamic temperature map estimated after TES highlights the presence of hot spots within the investigated area. Mineral mapping was carried out upon linear unmixing of the spectral emissivity datacube obtained after TES. The results show how the combination of thermal information and mineral distribution leads to a better characterization of test sites containing buried objects.
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.
Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 m) and a longwave (LWIR, 8-12 m) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.
For years, scientists have used thermal broadband cameras to perform target characterization in the longwave (LWIR)
and midwave (MWIR) infrared spectral bands. The analysis of broadband imaging sequences typically provides energy,
morphological and/or spatiotemporal information. However, there is very little information about the chemical nature of
the investigated targets when using such systems due to the lack of spectral content in the images. In order to improve
the outcomes of these studies, Telops has developed dynamic multispectral imaging systems which allow synchronized
acquisition on 8 channels, at a high frame rate, using a motorized filter wheel. An overview of the technology is
presented in this work as well as results from measurements of solvent vapors and minerals. Time-resolved multispectral
imaging carried out with the Telops system illustrates the benefits of spectral information obtained at a high frame rate
when facing situations involving dynamic events such as gas cloud dispersion. Comparison of the results obtained using
the information from the different acquisition channels with the corresponding broadband infrared images illustrates the
selectivity enabled by multispectral imaging for characterization of gas and solid targets.
This paper covers the development of 2 new major cameras in the defence product line, the JADE LR and the RUBY. Test Flight centers nowadays require 24h/day capability to in tracking fast and/or far targets such as fight aircraft, missiles or battle ships. Furthermore, radiometric measurements might be requested by the customer, requiring ability to sort out and process digital images. The JADE LR will be described in the first section of this paper. Based on uncooled technology, the RUBY light handheld infrared imager has been designed with in mind to enhance all weather capabilities for police and paramilitary task forces. Performances and innovative architecture will be discussed in section 2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.