Adaptive optics (AO) is used to correct wavefront aberrations in light in real-time. An AO system is principally made up
of three parts; a wavefront measuring device, a correction device, and a control algorithm to compute the residuals between the measured and a reference wavefront. Deformable mirrors (DM) are commonly used as the correction devices in such a system. This paper presents a method to improve a DM's temporal performance by attenuating parasite oscillations of its reflective membrane when applying high-frequency signals to the mirror actuators. The method consists of implementing low-pass filtering into the software driving the mirror. Different filtering functions were studied both when stimulating one single actuator, and when applying voltages to the complete array of actuators. A linear decomposition in 41 substeps showed the best performance for all considered configurations. The obtained results represented an important
reduction of the settling time as well as the overshoot of the signal response.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.