Tailored pore size mesoporous silica, incorporating different concentrations of transition metal-based catalysts, has been used as platforms for the growth of carbon nanotubes by the catalytic chemical vapor deposition method. Both compositional surface analysis by EDX/SEM combinatory techniques and thermo gravimetric analysis were employed to characterize the samples prior to CNT growth. The CNTs produced were characterized using Raman Spectroscopy, high resolution SEM and TEM. Raman spectroscopy showed good quality highly graphitic CNTs and indicated the presence of crystalline graphitic carbon, microcrystalline graphite as well as amorphous carbon in the carbon nanotube layer. TEM and HI RES SEM images matched diameters of the carbon nanotubes to the corresponding pores of the matrices. Comparison of the carbon nanotube diameters to porous properties of the mesoporous silica confirmed probable growth from within the pores. The density of the carbon nanotubes was found to be high for higher metal concentrations for the same pore diameters. Fe and Co were confirmed to be better catalysts, compared to Ni, for growth of carbon nanotubes by the catalytic chemical vapour method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.