Zone plate [1] has been used as a focal lens in transmission X-ray microscope (TXM) optical system in recent decades
[2, 3]. In TXM of NSRRC[4,5], the thickness of zone plate is about 900nm and the width of its out most zones is 50nm,
which has a high aspect ratio 18. When zone plate is tilted, the image quality will be affected by aberration. Since the
aspect ratio of zone plate is large, for incident beam, the shape of zone plate's transmission function will look different
when zone plate is tilted.
The both experimental and simulation result will be shown in this present. A five axes stage is designed and
manufactured for the zone plate holder for three dimensional movement, tip and tilt. According to Fourier theory, we can
calculate the wave distribution on image plane, if we know the original wave function, the distances between each
element, and the transparencies of the sample and zone plate. A parallel simulation process code in MATLAB is
developed in workstation cluster with up to 128Gbytes memory. The effects of aberration generated by tilt effect are
compared from the experimental data and simulation result. A maximum tilt angle within the acceptable image quality is
calculated by simulation and will be verified by experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.