We report the generation of a stable and broadband optical frequency comb featuring 28 THz bandwidth, sustained by a single 80 fs cavity soliton recirculating in a fiber Fabry-Pérot resonator. This large spectrum is comparable to frequency combs obtained with microresonators operating in the anomalous dispersion regime. Thanks to the compact design and the easy coupling of the resonator, cavity solitons can be generated in an all-fiber experimental setup with a continuous wave pumping scheme.
We report the generation of optical frequency combs in fiber Fabry-Perot resonators operating in the normal dispersion regime. Thanks to the compact design and the easy coupling of the resonator, switching waves can be generated in an all-fiber experimental setup employing a pulsed pumping scheme. The influence of dispersion is thoroughly discussed, revealing the potential to create a frequency comb spanning a 15 THz bandwidth through the utilization of a flattened low dispersion cavity. The experimental results are in good agreement with the theory and the numerical simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.