Photoacoustic remote sensing has been recently developed as an all-optical, non-contact, and label-free imaging modality capable of imaging a variety of endogenous contrast agents through the detection of reflectivity modulations. Initial work described an elasto-optic refractive index perturbation model to explain reflectivity modulations observed, however, in practice the magnitude of these reflectivity modulations has been found to be orders of magnitude smaller than those typically observed experimentally. In this report we utilize a ten million frames-per-second camera to further investigate these reflectivity modulations, while also exploring other potential mechanisms of laser pulse-induced reflectivity modulations. Laser-induced motion is demonstrated both laterally for gold wires suspended and submerged in air and water, respectively, and carbon fibers submerged in water, and axial motion is observed in gold wires submerged in a depth gradient of intralipid solution. This laser-induced sample motion is anticipated to cause reflectivity modulations local to the interrogation beam profile in microscopy set-ups. Non-motion-based maximum intensity modulations of 3% are also observed in gold wires submerged in water, indicating the presence of the originally predicted reflectivity modulations. Overall, these observations are important as they provide a widefield view of laser-pulse interactions unavailable in previous point scanning-based photoacoustic remote sensing microscopy configurations, where observed mechanisms occur on time-scales orders of magnitude faster than equivalent field of view point scanning capabilities.
Photoacoustic remote sensing (PARS) microscopy suffers from slow imaging speeds as a result of so far being an exclusively laser scanning microscopy-based technique. Here we introduce a camera-based PARS approach using a 10 million frames-per-second camera together with oblique 532nm excitation and white-light interrogation. 2mm x 1.2mm images of 20µm diameter gold bonding wires are obtained in fractions of a second albeit with lower resolution. Using these wide-field images, regions-of-interest can be established. Additionally, the observation of supersonic wavefronts suggest the generation of shockwaves. This observation is used to derive an empirical model for the time evolution of PARS signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.