In this paper, a novel method to generate optical frequency combs (OFCs) using nanoscale structures is explored. The growing demand for on-chip photonic processing dictates the need for multi-wavelength light sources, such as OFCs, that can be densely integrated with low processing power. Photonic crystal structues provide a viable method to generate all-optical modulation with sub-femto joule switching power and high density integration potential. This method of all-optical modulation is utilised here to generate an OFC from photonic crystal nanocavities and waveguides. Very- at-topped optical frequency combs with a small intensity variation can be generated based on theoretical predictions via detailed analysis of coupled mode theory for photonic crystal nanocavities and waveguides.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.