Myxofibrosarcoma is a rare, malignant myxoid soft tissue tumor. It can be challenging to distinguish it from a benign myxoma in clinical practice as there exists imaging and histologic feature overlap between these two entities. Some previous works used radiomics features of T1-weighted images to differentiate myxoid tumors, but few have used multimodality data. In this project, we collect a dataset containing 20 myxomas and 20 myxofibrosarcomas, each with a T1- weighted image, a T2-weighted image, and clinical features. Radiomics features from multi-modality images and clinical features are used to train multiple machine learning models. Our experiment results show that the prediction accuracy using the multi-modality features surpasses the results from a single modality. The radiomics features Gray Level Variance, Gray Level Non-uniformity Normalized extracted from the Gray Level Run Length Matrix (GLRLM) of the T2 images, and age are the top three features selected by the least absolute shrinkage and selection operator (LASSO) feature reduction model
Fluorescence imaging is a well-established optical modality that has been used to localize and track fluorophores in vivo and has demonstrated great potential for surgical guidance. Despite the variety of fluorophores currently being researched, many existing intraoperative fluorescence imaging systems are specifically designed for a limited number of applications. We present a modular wide-field fluorescence overlay tissue imaging system for intraoperative surgical guidance that is comprised of commercially available standardized components. Its modular layout allows for the accommodation of a broad range of fluorophores, fields of view (FOV), and spatial resolutions while maintaining an integrated portable design for intraoperative use. Measurements are automatic and feature a real-time projection overlay technique that intuitively displays fluorescence maps directly onto a 15 × 15 cm2 FOV from a working distance of 35 cm. At a 20-ms exposure time, 10 μM samples of indocyanine green could be measured with high signal-to-noise ratio and was later tested in an in vivo mouse model before finally being demonstrated for intraoperative autofluorescence imaging of human soft tissue sarcoma margins. The system’s modular design and ability to enable naked-eye visualization of wide-field fluorescence allow for the flexibility to adapt to numerous clinical applications and can potentially extend the adoption of fluorescence imaging for intraoperative use.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.