This will count as one of your downloads.
You will have access to both the presentation and article (if available).
We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not.
We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% ± 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.
View contact details
No SPIE Account? Create one