Optical nanofibers have recently emerged as attractive nanophotonic platforms for several applications ranging from quantum technologies to nonlinear optics due to both the tight optical confinement and their wide evanescent field. In this work, we report on a theoretical and experimental investigation of the optical Kerr effect in the evanescent field of silica nanofibers immersed in several highly nonlinear liquids such as ethanol, acetone and water and we further compare them with air cladding. We provide formula of the effective nonlinear coefficients including the contribution of the nanofiber silica core and of the evanescent field for varying nanofiber diameter and for different surrounding media. Our results show that the contribution of the silica core inversely scales with the effective mode area, while the cladding contribution via the evanescent field depends both on the taper diameter and the nonlinear properties of the liquid. More specifically, it is shown in a silica nanofiber immersed in acetone that the evanescent field contribution to the total Kerr effect is greater than that of the silica core for a taper diameter smaller than 560 nm. We further report the observation of a strong evanescent Kerr effect through measurements of the stimulated Raman-Kerr scattering in a silica nanofiber immersed in acetone. The evanescent Kerr effect is shown to give rise to a strong asymmetric spectral broadening of the first Raman order generated in the nonlinear liquid. Finally, the evanescent Kerr and Raman effects demonstrated in this work may find potential applications to ultra-sensitive liquid sensing and Raman spectroscopy, as the optical mode propagating in the nanofiber essentially interacts with the outer environment without any major contribution from the nanofiber itself.
We investigate both theoretically and experimentally the polarization properties of Brillouin light scattering in silica optical nanofibers. Our results show that while all hybrid acoustic waves scatter light without altering the state of polarization, one of the surface acoustic wave generates a depolarized Stokes light. Because of the slight ellipticity of the nanofiber, the surface wave is actually split into two torso-radial modes which give rise to polarization scrambling of the backward Brillouin Stokes signal. Our model also predicts that the polarization of the scattered light can be restored for one specific pump polarization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.