Multi-purpose Infra-Red Imaging System (MIRIS) is a near-infrared camera onboard on the Korea Science and
Technology Satellite 3 (STSAT-3). The MIRIS is a wide-field (3.67° × 3.67°) infrared imaging system which employs a
fast (F/2) refractive optics with 80 mm diameter aperture. The MIRIS optics consists of five lenses, among which the
rear surface of the fifth lens is aspheric. By passive cooling on a Sun-synchronous orbit, the telescope will be cooled
down below 200 K in order to deliver the designed performance. As the fabrication and assembly should be carried out
at room temperature, however, we convert all the lens data of cold temperature to that of room temperature. The
sophisticated opto-mechanical design accommodates the effects of thermal contraction after the launch, and the optical
elements are protected by flexure structures from the shock (10 G) during the launch. The MIRIS incorporates the wide-band
filters, I (1.05 μm) and H (1.6 μm), for the Cosmic Infrared Background observations, and also the narrow-band
filters, Paα (1.876 μm) and a specially designed dual-band continuum, for the emission line mapping of the Galactic
interstellar medium. We present the optical design, fabrication of components, assembly procedure, and the performance
test results of the qualification model of MIRIS near-infrared camera.
MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and
Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing
to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was
designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and
stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding
parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a
sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the
spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro
cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a
operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the
required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure
were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for
the mechanical parts of MIRIS.
Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Korea Science and Technology Satellite-3
(STSAT-3), which is being developed by Korea Astronomy & Space Science Institute (KASI). MIRIS is a small space
telescope mainly for astronomical survey observations in the near infrared wavelengths of 0.9~2 μm. A compact wide
field (3.67 x 3.67 degree) optical design has been studied using a 256 x 256 Teledyne PICNIC FPA IR sensor with a
pixel scale of 51.6 arcsec. The passive cooling technique is applied to maintain telescope temperature below 200 K with
a cold shutter in the filter wheel for accurate dark calibration and to reach required sensitivity, and a micro stirling cooler
is employed to cool down the IR detector array below 100K in a cold box. The science mission of the MIRIS is to
survey the Galactic plane in the emission line of Paschen-α (Paα, 1.88 μ;m) and to detect the cosmic infrared background
(CIB) radiation. Comparing the Paα map with the Hα data from ground-based surveys, we can probe the origin of the
warm-ionized medium (WIM) of the Galaxy. The CIB is being suspected to be originated from the first generation stars
of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um)
bands to search the red shifted Lyman cutoff signature. Recent progress of the MIRIS imaging system design will be
presented.
We report on fabrication and photon detection experiments of Nb/Al and Ta/Al superconducting tunnel junctions (STJs).
5-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, reactive ion etching, and
chemical vapor deposition techniques. STJs with 4 different sizes (20, 40, 60 and 80 μm) were deposited on sapphire
substrates and tested in a two stage adiabatic demagnetization refrigerator with an operating temperature ~ 50 mK.
Photons from different light sources are injected into the junctions via an optical fiber in combination with a
monochromator which can produce photons from 30 nm to 550 nm with 0.1 nm resolution. The junction is read out
through a charge-sensitive preamplifier followed by a shaping stage. We have measured some performance indicators
and quality factors of the junctions from resultant I-V curves.
The Korea Astronomy and Space Science Institute (KASI) is building the KASI Near Infrared Camera System (KASINICS) for the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. With KASINICS we will mostly do time monitoring observations, e.g., thermal variations of Jovian planet atmospheres, variable stars, and blazars. We use a 512 x 512 InSb array (Aladdin III Quadrant, Raytheon Co.) for L-band observations as well as J, H, and Ks-bands. The field-of-view of the array is 6 x 6 arcmin with 0.7 arcsec/pixel. Since the SOAO 61-cm telescope was originally designed for visible band observations, we adopt an Offner relay optical system with a Lyot stop to eliminate thermal background emission from the telescope structures. In order to minimize weight and volume, and to overcome thermal contraction problems, we optimize the mechanical design of the camera using the finite-element-method (FEM) analysis. Most of the camera parts including the mirrors are manufactured from the same melt of aluminum alloy to ensure homologous contraction from room temperature to 70 K. We also developed a new control electronics system for the InSb array (see the other paper by Cho et al. in this proceedings). KASINICS is now under the performance test and planned to be in operation at the end of 2006.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.