Liver-on-a-chip is a 3D in vitro hepatic microphysiological system aiming to recreate the conditions of liver tissue on a microscopic scale. CN Bio microphysiological system (CN Bio Innovations, UK) is one of the advanced liver-on-a-chip models. In this study, a multimodal optical imaging platform incorporating nonlinear optical imaging techniques such as multiphoton microscopy (MPM), fluorescence lifetime imaging microscopy (FLIM), coherent anti-Stokes Raman scattering (CARS) microscopy, and simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy was used for characterizing the structural and functional changes associated with inflammation, lipid accumulation and drug uptake in the CNBio liver-on-a-chip model.
Recent advances in tissue engineering and microfabrication have led to development of novel Complex In Vitro models (CIVMs) that more closely mimic pathophysiological functions of human tissues and organs. CIVMs can provide deeper insights into the mechanisms of human disease and pharmacological properties of new drug candidates during early stages of development. In this study, a multimodal optical imaging platform was used for characterizing the structural and functional features of a liver-on-a-chip model (CN Bio Innovations, UK).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.