MOSAIC is a wide-field spectrograph, combining multiple-object spectroscopy and integral field units, to cover the ELT focal plane with a field-of-view of 7.8 arcmin from the blue to the near-infrared, 390 to 1800nm. In the current Phase B design, AO is GLAO supported by four LGS in a fixed asterism and with multiple NGS. Although the GLAO correction is modest compared to other ELT instrumentation, the use of the integrated M4/M5 correction elements and the existing LGS allows for an efficient design which is outlined. MOSAIC GLAO will use the ELT PFS guide-probes to compensate for high- frequency tip/tilt errors, greatly relaxing the requirements on the instrumental NGS sensors. The Phase A architecture used the same pick-off mirrors as the IFU instruments to feed the NGS-WFS from anywhere in the focal plane, which was mandatory for the proposed MOAO design. The reduced performance requirements at Phase B allows us to take advantage, instead, of the four 2 arcmin diameter field-of-view through the LGS cutouts, arranged in a square pattern at an off-axis distance of 3.75 arcmin. In each LGS cutout, a wide-field-imager is implemented–alongside one LGS WFS–to acquire multiple NGS that supports both slow tip/tilt measurements, isolating instrument-Nasmyth flexure, solving for the astrometric distortion expected from errors in the ELT optical path, and supporting the alignment of MOS apertures with the field. The latter is a key requirement for MOSAIC, leading to 40mas accuracy in MOS aperture positioning and 40mas rotation displacement at the edge of the scientific field.
A-DOT (Active Deployable Optical Telescope) is a payload prototype of a 6U deployable telescope operating in the visible from 400 to 800 nm with an aperture diameter of 300 mm. It aims to deliver diffraction-limited performance using on-board wavefront sensing (WFS) and active control (WFC). A-DOT is currently in the design phase. This paper presents the development of a deployable, single-segment, mechanical prototype. The deployable mirror segment is kinematically mounted to a monolithic flexure using three spherical contacts in a cup-grooveflat arrangement. Tip, tilt and piston (PTT) are controlled using linear, piezoelectric actuators at each contact and the mirror position measured using capacitive sensors. The prototype is packaged within the allowable CubeSat volume and uses space-compatible hardware in a non-magnetic design.
A-DOT (Active Deployable Optical Telescope) is a payload prototype project of a 6U segmented deployable telescope with an aperture diameter of 300 mm currently in the design phase. This paper investigates two different strategies for phasing a deployable segmented telescope. The first method employs a classical optimisation approach, where the image sharpness is used as the primary metric for aligning the mirror segments. This technique involves iteratively adjusting the individual segments' positions and orientations to maximise the resulting image's sharpness. The second method takes a more innovative approach by leveraging the power of deep learning techniques. Deep learning algorithms, trained on a large dataset of simulated images, can learn to recognise and correct phasing errors automatically. This approach can potentially streamline the phasing process and enhance the telescope's overall performance. Preliminary results from the study demonstrate the efficacy of both methods in achieving excellent phasing control. Remarkably, these techniques have successfully identified and corrected significant phasing errors, with path length differences of several microns, ultimately reducing the residual errors to the desired performance level using a point source, typically below 15 nm in the visible spectrum.
MOSAIC is the Multi-Object Spectrograph (MOS) for the 39m Extremely Large Telescope (ELT) of the European Southern Observatory (ESO), with unique capabilities in terms of multiplex, wavelength coverage and spectral resolution. It is a versatile multi-object spectrograph working in both the Visible and NIR domains, designed to cover the largest possible area (∼40 arcmin2) on the focal plane, and optimized to achieve the best possible signal-to-noise ratio on the faintest sources, from stars in our Galaxy to galaxies at the epoch of the reionization. In this paper we describe the main characteristics of the instrument, including its expected performance in the different observing modes. The status of the project will be briefly presented, together with the positioning of the instrument in the landscape of the ELT instrumentation. We also review the main expected scientific contributions of MOSAIC, focusing on the synergies between this instrument and other major ground-based and space facilities.
The wavelength dependent refraction of light in the atmosphere causes the chromatic dispersion of a target on the focal plane of an instrument. This is known as atmospheric dispersion, with one of the consequences being wavelength dependent flux losses which are difficult to minimise, requiring analysis in both instrument design and operations. We present Atmosphyre, a novel python package developed to characterise the impact of atmospheric dispersion on a spectrograph, with a focus on fibre multi-object spectrographs (MOS) which will be at the forefront of ground-based astronomy for the next few decades. We show example simulations and provide recommendations for minimising fibre MOS flux losses. We conclude that the guiding wavelength should typically be bluer than the observing band mid-wavelength, around 25-45% of the way through the band. The aperture should be centred on this wavelength’s location on the focal plane. This wavelength/position remains constant for all reasonable declinations and target hour angles. We also present an application of the package to MOSAIC, the ELT’s multi-object spectrograph. We find that differential losses greater than 10% are unavoidable for 1h observations that are a) after a local hour angle of 2.5h, or b) at declinations below -60° and above 10°. We identify that the introduction of an atmospheric dispersion corrector (ADC) would result in the significant reduction of spectral distortions, a gain in survey speed for many observations, and enable the implementation of wider visible observing bands; as a result, there has been a proposal to adopt ADCs at a positioner level for MOSAIC. Future work includes adding field differential refraction to Atmosphyre, important for future wide-field multi-object spectrograph projects such as the proposed WST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.