KEYWORDS: Spectroscopy, Mid-IR, Signal to noise ratio, Time metrology, Optical parametric oscillators, Spectrometer engineering, Photodetectors, Modulation, Gases, Frequency combs
A dual frequency comb spectrometer is realized by electro-optic modulation of a 1550 nm laser and subsequent conversion to the mid-infrared by difference-frequency generation (DFG). Using an optical parametric oscillator for the DFG the combs can be tuned from 3 μm to 4.7 μm with 440 comb modes covering 220 GHz (< 6 cm-1). Trace gas detection of nitrous oxide, carbon dioxide and methane is demonstrated with a 7.2-m-multi-pass cell while a sufficiently low noise-equivalent absorbance is reached in already 1 s. The bandwidth normalized noise-equivalent-absorption coefficient is consistently below 2.8 × 10-6 Hz-1/2 cm-1 while the precision of the determined concentrations is better 2 % Hz-1/2.
The comprehensive monitoring of the food chain, i.e. from growth to consumer, without gaps is of outstanding importance to consumer health and the food industry alike. Yet, due to the lack of suitable sensing technologies at adequate costs, only selective, critical spots can currently be monitored. While the particular food to be monitored may take any shape or form during processing, gases are always present and their composition is uniquely suited to learn about the state of the system. In this contribution, a universal quantum sensor concept to identify and quantify the components of complex gas matrices is presented. The sensing approach is based on detecting Raman scattered photons from inside a gas sample filled optical cavity. Because of the typically small Raman scattering cross-sections on the order of 10-30 cm2 a Fabry-Perot cavity with a Finesse of about 2,000 is used to enhance the available laser power of an extended cavity diode laser running at 780 nm. The scattered light is funneled onto a spectrometer after Rayleigh scattered photons have been suppressed using a notch filter. To allow in-situ determination of arbitrary gas matrices, the sensor concept relies on the diffusion of ambient air into the cavity. The setup is currently able to simultaneously detect gases with Raman spectra up to 3000 cm-1, which includes important indicators for food packaging, including nitrogen, oxygen, and carbon dioxide.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.