SignificanceCellular metabolism is highly dynamic and strongly influenced by its local vascular microenvironment, gaining a systems-level view of cell metabolism in vivo is essential in understanding many critical biomedical problems in a broad range of disciplines. However, very few existing metabolic tools can quantify the major metabolic and vascular parameters together in biological tissues in vivo with easy access.AimWe aim to fill the technical gap by demonstrating a point-of-care, easy-to-use, easy-to-access, rapid, systematic optical spectroscopy platform for metabolic and vascular characterizations on biological models in vivo to enable scientific discoveries to translate more efficiently to clinical interventions.ApproachWe developed a highly portable optical spectroscopy platform with a tumor-sensitive fiber probe and easy-to-use spectroscopic algorithms for multi-parametric metabolic and vascular characterizations of biological tissues in vivo. We then demonstrated our optical spectroscopy on tissue-mimicking phantoms, human subjects, and small in vivo tumor models. We also validated the proposed easy-to-use algorithms with the Monte Carlo inversion models for accurate and rapid spectroscopic data processing.ResultsOur tissue-mimicking phantom, human subjects, and in vivo animal studies showed that our portable optical spectroscopy along with the new spectroscopic algorithms could quantify the major metabolic and vascular parameters on biological tissues with a high accuracy. We also captured the highly diverse metabolic and vascular phenotypes of head and neck tumors with different radiation sensitivities.ConclusionsOur highly portable optical spectroscopy platform along with easy-to-use spectroscopic algorithms will provide an easy-to-access way for rapid and systematic characterizations of biological tissue metabolism and vascular microenvironment in vivo, which may significantly advance translational cancer research in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.