KEYWORDS: Copper indium gallium selenide, Photovoltaics, Gallium, Transmission electron microscopy, Gallium arsenide, Solar energy, Scanning electron microscopy, Optoelectronics, Thin films
Over the last several decades, champion photovoltaic (PV) devices using CuInGaSe2 (CIGS) as the absorber material have been achieved using polycrystalline films exclusively. This has led to the assumption that polycrystalline CIGS generally outperform single-crystal CIGS in PV devices. However, recently, very high-quality epitaxial CIGS has been grown on GaAs substrates producing PV device efficiencies of 20.0%. These results have revived the debate on what effects grain boundaries have on PV device efficiencies. In this contribution, we compare the optoelectronic properties of polycrystalline CIGS films with those of high-efficiency epitaxial CIGS films. This comparison reveals that grain boundaries are associated with properties that negatively impact PV device efficiency. Additionally, we find that the grain interiors in polycrystalline films exhibit properties that are similar to the high-performance epitaxial films. Our results suggest that it may be possible to achieve higher device efficiencies with epitaxial CIGS than with polycrystalline films.
Alkali post-deposition treatments significantly improve the performance of CuInGaSe2 (CIGS) devices, but there is still room for improvement. Here, we investigate the effects of potassium fluoride alkali post-deposition treatment on the defect chemistry and recombination at grain boundaries and grain interiors using temperature- and injection-dependent cathodoluminescence (CL) spectrum imaging. We study CIGS thin films grown on alkali-free sapphire substrates to isolate the effects of alkali treatment from alkali metals that can diffuse from standard soda-lime glass substrates. We find that alkali treatment affects the energy and temperature dependence of the luminescence peaks, as well as the defect activation energies. CL spectrum images reveal that the luminescence transitions at grain boundaries have a distinct power dependence after alkali treatment and substantially different defect chemistry. This work shows that temperatureand injection-dependence CL spectrum images can provide unique insight into the defect chemistry and recombination behavior of CIGS thin films.
The degradation mechanism of Cu(In,Ga)Se2 (CIGS) solar cells on exposure to air has been investigated. Exposure to air at room temperature slightly reduces the conversion efficiency of CIGS solar cells, and the conversion efficiency decreases significantly under damp heat testing at 85 °C and 85% relative humidity due to low shunt resistance. On the other hand, shunt resistance increases after dry nitrogen heating. Therefore, oxygen and humidity should degenerate the solar cell performance. The low shunt resistance and conversion efficiency are completely recovered after removing the side edges of the CIGS solar cells by mechanical scribing. These results suggest that low-resistive layers are formed on the sidewalls of the solar cells during damp heat testing. The low-resistive layers on the sidewalls are identified to be molybdenum oxides and sodium molybdate by Auger electron spectroscopy. After etching the oxides on the sidewalls by alkaline solution, the saturation current density and ideality factor are confirmed to be improved. These results suggest that metal oxides on the sidewalls of CIGS solar cells may act as recombination centers.
For higher cell-to-module efficiency in Cu(In,Ga)Se2 (CIGS) thin-film solar cells, it is important to reduce the loss of active area due to integrated connection. The integrated connection contains three scribing processes: P1 (back contact insulation), P2 (electrical connection) and P3 (transparent conductive oxide, shortly TCO front contact insulation). In this work, we focused on ultrashort-pulse laser scribing (λ=1034 nm, Δτ=300 fs) of TCO via lift-off process as damage-less P3 scribing of CIGS thin-film solar cells. The lift-off of TCO was caused by laser ablation of only an upper part of CIGS light-absorbing layer. The dependence of lift-off behavior on the laser pulse energy and TCO film thickness has been investigated. It was observed that the lift-off of TCO formed a heat-affected zone (HAZ) with a thickness up to 250 nm beneath the trench bottom, where the CIGS experienced to melt. Further, thinner TCO film required lower laser energy threshold for the TCO lift-off, which is favorable to higher solar cell efficiency due to smaller HAZ. Using the TCO liftoff as P3, a submodule with an active area of approximately 3.5 cm2 made by all laser scribing exhibited the conversion efficiency of 11.6 %. After post-annealing at 85 °C for 15 h in vacuum for recovering laser-induced damages, the efficiency was successfully improved to 15.0 %, which is comparable to mechanically-scribed one.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.